

# Schalltechnische Untersuchung zum Bebauungsplan "Peter & Paul Nord West" im Ortsteil Wattenweiler des Marktes Neuburg a. d. Kammel



B.Sc. Stefan Herrmann

Bericht-Nr.: ACB-0325-246314/02

31.03.2025



Titel: Schalltechnische Untersuchung

zum Bebauungsplan "Peter & Paul Nord West"

im Ortsteil Wattenweiler des Marktes Neuburg a. d. Kammel

Auftraggeber: Markt Neuburg a. d. Kammel

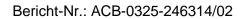
Bergstraße 2

86476 Neuburg a. d. Kammel

Auftrag vom: 11.09.2024

Bericht-Nr.: ACB-0325-246314/02

Umfang: 17 Seiten Bericht und 4 Anlagen


Datum: 31.03.2025

Auftragnehmer: ACCON GmbH

Gewerbering 5 86926 Greifenberg

Bearbeiter: B.Sc. Stefan Herrmann

Diese Unterlage ist für den Auftraggeber bestimmt und darf nur insgesamt kopiert und verwendet werden. Bei Veröffentlichung dieser Unterlage (auch auszugsweise) hat der Auftraggeber sicherzustellen, dass die veröffentlichten Inhalte keine datenschutzrechtlichen Bestimmungen verletzen.





### Inhalt

| Q | uelle | enve   | rzeichnis                                          | 4  |
|---|-------|--------|----------------------------------------------------|----|
| 1 | Anla  | ass (  | und Aufgabenstellung                               | 5  |
| 2 | Beu   | ırteil | ungsgrundlagen                                     | 5  |
|   | 2.1   | Sch    | allschutz in der Bauleitplanung (DIN 18005)        | 5  |
|   | 2.2   |        | des-Immissionsschutzgesetz (BImSchG)               |    |
|   | 2.3   |        | _ärm                                               |    |
|   | 2.    |        | Allgemeines                                        |    |
|   | 2.    | 3.2    | Kurzzeitige Geräuschspitzen und seltene Ereignisse | 7  |
|   | 2.    | 3.3    | Verkehr auf öffentlichen Verkehrsflächen           | 8  |
|   | 2.4   | Ger    | äuschkontingentierung (DIN 45691)                  | 8  |
| 3 | Örtl  | iche   | Situation                                          | 9  |
| 4 | Ger   | äuso   | chkontingentierung                                 | 10 |
|   | 4.1   | lmn    | issionsorte und Immissionsrichtwerte (IRW)         | 10 |
|   | 4.2   | Vor    | pelastung                                          | 11 |
|   | 4.3   | Emi    | ssionskontingentierung                             | 13 |
| 5 | Tex   | tvor   | schläge für den Bebauungsplan                      | 15 |
|   | 5.1   | Beg    | ründung                                            | 16 |
|   | 5.2   | Fes    | setzungen                                          | 16 |
| 6 | Zus   | amn    | nenfassung und Fazit                               | 16 |
|   |       |        |                                                    |    |
| Α | nlag  | jen    |                                                    |    |
| A | nlag  | e 1    | Emissionsdaten                                     |    |
| A | nlag  | e 2    | Teilpegellisten                                    |    |
| A | nlag  | e 3    | Lageplan                                           |    |
| Α | nlag  | e 4    | Berechnungskonfiguration                           |    |



#### Quellenverzeichnis

- [1] Architekt Gerhard Glogger, Planunterlagen zum Bebauungsplan "Peter & Paul Nord West", Balzhausen / Neuburg a. d. Kammel, 2024.
- [2] DIN 18005, Schallschutz im Städtebau, Grundlagen und Hinweise für die Planung, Juli 2023.
- [3] DIN 18005 Beiblatt 1, Schallschutz im Städtebau, Schalltechnische Orientierungswerte für die städtebauliche Planung, Juli 2023.
- [4] TA Lärm, Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz, TA Lärm – Technische Anleitung zum Schutz gegen Lärm, 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch die Verwaltungsvorschrift vom 1. Juni 2017 (BAnz AT 08.06.2017 B5) in Kraft getreten am 9. Juni 2017.
- [5] BlmSchG, Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz BlmSchG), 17. Mai 2013 (BGBI. I S. 1274), zuletzt gändert durch Artikel 3 des Gesetzes vom 18. Juli 2017 (BGBI. I S. 2771).
- [6] 16. BlmSchV, Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BlmSchV), 04.11.2020.
- [7] DIN 45691, Geräuschkontingentierung, Dezember 2006.
- [8] Bundesverwaltungsgericht (BVerwG), Urteil BVerwG 4 CN 7.16, Festsetzung von Emissionskontingenten für ein Gewerbegebiet, Leipzig, 07.12.2017.
- [9] OpenStreetMap, Daten von OpenStreetMap Veröffentlicht unter ODbL, https://www.openstreetmap.de/.
- [10] Verordnung über die bauliche Nutzung der Grundstücke (Baunutzungsverordnung BauNVO), "Baunutzungsverordnung in der Fassung der Bekanntmachung vom 21. November 2017 (BGBI. I S. 3786), die durch Artikel 2 des Gesetzes vom 14. Juni 2021 (BGBI. I S. 1802) geändert worden ist".
- [11] Wirth Schreinerei, Unterlagen zum Betriebsgeschehen der Wirth Schreinerei, Wattenweiler, 23.10.2024.
- [12] Bayerisches Landesamt für Umwelt (LfU), Parkplatzlärmstudie 6. Überarbeitete Auflage, August 2007.
- [13] DIN ISO 9613-2 E, Dämpfung des Schalls bei der Ausbreitung im Freien Teil 2: Allgemeines Berechnungsverfahren, September 1997.
- [14] Datakustik GmbH. CadnaA Version 2024, 2024.
- [15] Richtlinien für den Lärmschutz an Straßen, RLS-19, 2019.



#### 1 Anlass und Aufgabenstellung

Der Markt Neuburg a. d. Kammel plant die Aufstellung des Bebauungsplans "Peter & Paul Nord West" im Ortsteil Wattenweiler des Marktes Neuburg a. d. Kammel [1] und damit die Entwicklung von Wohn- und Mischgebietsflächen (Gebietsausweisung WA und MI).

Hinsichtlich des Immissionsschutzes sollen Emissionskontingente für das Mischgebiet festgelegt werden, um sicherzustellen, dass in den angrenzenden Gebieten (bestehende und geplante Wohnbebauung) die Orientierungswerte nach DIN 18005 [2], [3] bzw. die wertgleichen Immissionsrichtwerte nach TA Lärm [4] eingehalten werden. Zudem sollen die Einwirkungen des südlich gelegenen Schreinereibetriebs auf das Plangebiet ermittelt und beurteilt werden (Vorbelastung).

Die ACCON GmbH wurde mit der Durchführung der schalltechnischen Untersuchung betraut. Im vorliegenden Bericht werden Vorgehensweise sowie Ergebnisse der schalltechnischen Untersuchung zusammenfassend dargestellt.

#### 2 Beurteilungsgrundlagen

Nachfolgend werden die im Rahmen der Begutachtung herangezogenen Beurteilungsgrundlagen zusammenfassend dargestellt.

#### 2.1 Schallschutz in der Bauleitplanung (DIN 18005)

Schallschutzbelange werden in der Bauleitplanung durch die DIN 18005 (Schallschutz im Städtebau – Grundlagen und Hinweise für die Planung, Juli 2023) [5] konkretisiert.

Nach DIN 18005 Beiblatt 1 (Schallschutz im Städtebau – Schalltechnische Orientierungswerte für die städtebauliche Planung, Juli 2023, [6]) sind bei der Bauleitplanung in der Regel den verschiedenen schutzbedürftigen Nutzungen (z. B. Bauflächen, Baugebiete, sonstige Flächen) die Orientierungswerte in Tabelle 1für den Beurteilungspegel zuzuordnen.

Die Geräusche verschiedener Arten von Schallquellen (Verkehr, Industrie und Gewerbe, Freizeitlärm) sollen wegen der unterschiedlichen Einstellung der Betroffenen zu verschiedenen Arten von Geräuschquellen jeweils für sich allein mit den Orientierungswerten verglichen und nicht addiert werden.



Tabelle 1: Orientierungswerte nach DIN 18005-1 Beiblatt 1

|                                                                                 | Orientier | ungswert  |
|---------------------------------------------------------------------------------|-----------|-----------|
| Nutzungsart                                                                     | tags      | nachts¹   |
|                                                                                 | dB(A)     | dB(A)     |
| reine Wohngebiete (WR), Wochenendhausgebiete, Ferienhausgebiete                 | 50        | 35 / 40   |
| allgemeine Wohngebiete (WA), Kleinsiedlungsgebiete (WS) und Campingplatzgebiete | 55        | 40 / 45   |
| Friedhöfe, Kleingartenanlagen und Parkanlagen                                   | 55        | 55        |
| besondere Wohngebiete (WB)                                                      | 60        | 40 / 45   |
| Dorfgebiete (MD) und Mischgebiete (MI)                                          | 60        | 45 / 50   |
| Kerngebiete (MK) und Gewerbegebiete (GE)                                        | 65        | 50 / 55   |
| sonstige Sondergebiete, soweit sie schutzbedürftig sind, je nach Nutzungsart    | 45 bis 65 | 35 bis 65 |

#### 2.2 Bundes-Immissionsschutzgesetz (BImSchG)

Nach § 22 Bundes-Immissionsschutzgesetz [7] sind nicht genehmigungsbedürftige Anlagen so zu errichten und zu betreiben, dass

- 1. schädliche Umwelteinwirkungen verhindert werden, die nach dem Stand der Technik vermeidbar sind,
- 2. nach dem Stand der Technik unvermeidbare schädliche Umwelteinwirkungen auf ein Mindestmaß beschränkt werden und
- 3. die beim Betrieb der Anlagen entstehenden Abfälle ordnungsgemäß beseitigt werden können.

Zum Schutz der Allgemeinheit und der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche sowie der Vorsorge gegen schädliche Umwelteinwirkungen durch Geräusche dient die 6. Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26.08.1998 [4]. Sie gilt für genehmigungsbedürftige und nicht genehmigungsbedürftige Anlagen.

#### 2.3 TA Lärm

#### 2.3.1 Allgemeines

Für die Summe der Geräuscheinwirkungen aus bestehenden Gewerbe- und Industrieanlagen (Vorbelastung) und den Geräuschen geplanter Anlagen gelten die Immissionsrichtwerte der folgenden Tabelle. Die Immissionsrichtwerte beziehen sich auf Immissionsorte außerhalb von Gebäuden.

246314\_02\_B.docx Seite 6

\_

Anmerkung: Bei zwei angegeben Nachtwerten (Ausnahme: Sondergebiete) soll der niedrigere für Industrie-, Gewerbe- und Freizeitlärm sowie für Geräusche von vergleichbaren öffentlichen Betrieben gelten, die höheren Orientierungswerte beziehen sich auf die Belastung durch Verkehrslärm.



Tabelle 2: Immissionsrichtwerte nach TA Lärm [4], Ziffer 6.1

|                                                     | Immission | srichtwert |
|-----------------------------------------------------|-----------|------------|
| Gebietsnutzung im Einwirkungsbereich                | tags      | nachts     |
|                                                     | dB(A)     | dB(A)      |
| a) Industriegebiete                                 | 70        | 70         |
| b) Gewerbegebiete                                   | 65        | 50         |
| c) urbane Gebiete                                   | 63        | 45         |
| d) Kerngebiete, Dorfgebiete und Mischgebiete        | 60        | 45         |
| e) allgemeine Wohngebiete und Kleinsiedlungsgebiete | 55        | 40         |
| f) reine Wohngebiete                                | 50        | 35         |
| g) Kurgebiete, Krankenhäuser und Pflegeanstalten    | 45        | 35         |

Die Immissionsrichtwerte beziehen sich auf folgende Zeiten:

tags 06:00 Uhr – 22:00 Uhr
 nachts 22:00 Uhr – 06:00 Uhr.

Die Immissionsrichtwerte gelten während des Tages für eine Beurteilungszeit von 16 Stunden. Maßgebend für die Beurteilung der Nacht ist die volle Nachtstunde (z. B. 01:00 Uhr bis 02:00 Uhr) mit dem höchsten Beurteilungspegel, zu dem die zu beurteilende Anlage relevant beiträgt.

Bei der Bestimmung des Beurteilungspegels sind folgende Zuschläge zu berücksichtigen:

Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit, Ruhezeitenzuschlag K<sub>R</sub>:
 Für nachfolgend aufgeführte Zeiten ist in Gebieten nach Tabelle 1, Buchstaben e bis g
 bei der Ermittlung des Beurteilungspegels die erhöhte Störwirkung von Geräuschen
 durch einen Zuschlag von 6 dB zu berücksichtigen:

| an Werktagen            | 06:00 – 07:00 Uhr |
|-------------------------|-------------------|
|                         | 20:00 – 22:00 Uhr |
| an Sonn- und Feiertagen | 06:00 – 09:00 Uhr |
|                         | 13:00 – 15:00 Uhr |
|                         | 20:00 - 22:00 Uhr |

- Für die Teilzeiten, in denen aus den zu beurteilenden Geräuschimmissionen ein oder mehrere Töne hervortreten oder in denen das Geräusch informationshaltig ist, ist ein Zuschlag für Ton- und Informationshaltigkeit K<sub>T</sub> von (je nach Auffälligkeit) 3 dB oder 6 dB anzusetzen. Bei Anlagen, deren Geräusche nicht ton- oder informationshaltig sind, ist K<sub>T</sub> = 0 dB.
- Für die Teilzeiten, in denen das zu beurteilende Geräusch Impulse enthält, ist ein Zuschlag für Impulshaltigkeit K<sub>I</sub> von (je nach Störwirkung) 3 dB oder 6 dB anzusetzen. Bei Anlagen, deren Geräusche keine Impulse enthalten, ist K<sub>I</sub> = 0 dB.

#### 2.3.2 Kurzzeitige Geräuschspitzen und seltene Ereignisse

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten (Spitzenpegelkriterium).



In Punkt 6.3 der TA Lärm ist aufgeführt, dass bei seltenen Ereignissen, d. h. an nicht mehr als 10 Tagen oder Nächten eines Kalenderjahres und nicht mehr als an jeweils zwei aufeinander folgenden Wochenenden, Immissionsrichtwerte von tagsüber bis zu 70 dB(A) und nachts bis zu 55 dB(A) ausgeschöpft werden dürfen.

Einzelne kurzzeitige Geräuschspitzen dürfen diese Werte

- in Gebieten nach Nummer 6.1 Buchstabe b am Tag um nicht mehr als 25 dB(A) und in der Nacht um nicht mehr als 15 dB(A),
- in Gebieten nach Nummer 6.1 Buchstaben c bis g am Tag um nicht mehr als 20 dB(A) und in der Nacht um nicht mehr als 10 dB(A)

überschreiten.

#### 2.3.3 Verkehr auf öffentlichen Verkehrsflächen

Zu den von der Anlage durch Mehrverkehr auf öffentlichen Verkehrsflächen ("anlagenbezogener Verkehr") hervorgerufenen Geräuschimmissionen führt die TA Lärm unter Ziffer 7.4 aus:

- Fahrzeuggeräusche auf dem Betriebsgrundstück sowie bei der Ein- und Ausfahrt, die in Zusammenhang mit dem Betrieb der Anlage entstehen, sind der zu beurteilenden Anlage zuzurechnen.
- Geräusche des An- und Abfahrtverkehrs auf öffentlichen Verkehrsflächen in einem Abstand von bis zu 500 Metern von dem Betriebsgrundstück in Gebieten nach Tabelle 1
  Buchstaben c bis g sollen durch Maßnahmen organisatorischer Art soweit wie möglich vermindert werden, soweit
  - sie den Beurteilungspegel der Verkehrsgeräusche für den Tag oder die Nacht rechnerisch um mindestens 3 dB(A) erhöhen,
  - keine Vermischung mit dem übrigen Verkehr erfolgt ist und
  - die Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV) [8] erstmals oder weitergehend überschritten werden.

#### 2.4 Geräuschkontingentierung (DIN 45691)

Aus schalltechnischer Sicht ist bei der Bauleitplanung und der rechtlichen Umsetzung zu gewährleisten, dass die Geräuscheinwirkungen durch die zulässigen Nutzungen nicht zu einer Verfehlung des angestrebten Schallschutzzieles führen. Dazu ist in der Planung ein Konzept für die Verteilung der an den maßgeblichen Immissionsorten für das Plangebiet insgesamt zur Verfügung stehenden Geräuschanteile zu entwickeln.

Ein Instrument dies zu gewährleisten und rechtlich umzusetzen ist die Festsetzung von Geräuschkontingenten. Die Emissionskontingente  $L_{EK}$  werden im Bebauungsplan verbindlich festgelegt und gelten In Bezug auf Einwirkungsbereiche in der Umgebung des Plangebietes. Die Emissionskontingente  $L_{EK}$  geben die zulässige Schallabstrahlung pro Quadratmeter der Grundstücksfläche an. Das Verfahren zur Geräuschkontingentierung und zur Bestimmung der flächenbezogenen Schallleistung der Teilflächen ist in der DIN 45691, Geräuschkontingentierung, Dezember 2006 [9], geregelt.



Die Norm DIN 45691 legt das Verfahren und eine einheitliche Terminologie als fachliche Grundlagen zur Geräuschkontingentierung in Flächennutzungs- bzw. Bebauungsplänen für Industrie- oder Gewerbegebiete und auch für Sondergebiete fest und gibt rechtliche Hinweise für die Umsetzung.

#### 3 Örtliche Situation



Abbildung 1: Lage des Standortes in Wattenweiler (Quelle: [11])

Das Plangebiet befindet sich im Norden des Ortsteiles Wattenweiler des Marktes Neuburg a. d. Kammel.



#### 4 Geräuschkontingentierung

Bei der städtebaulichen Planung, insbesondere bei der Ausweisung neuer Gewerbe- und Industriegebiete, ist aus schalltechnischer Sicht zu gewährleisten, dass die Geräuscheinwirkungen durch die zulässigen Nutzungen nicht zu einer Verfehlung des angestrebten Schallschutzzieles (Einhaltung der maßgebenden Immissionsrichtwerte) führen.

Ein Instrument dies zu gewährleisten und rechtlich umzusetzen ist die Festsetzung von Emissionskontingenten im Bebauungsplan. Die Emissionskontingente L<sub>EK</sub> werden im Bebauungsplan verbindlich festgelegt und gelten bzgl. Einwirkungsbereichen in der Umgebung des Plangebietes. Die Emissionskontingente L<sub>EK</sub> geben die zulässige Schallabstrahlung pro Quadratmeter der Grundstücksfläche an. Das Verfahren zur Bestimmung des Emissionskontingentes ist in der DIN 45691 [9] geregelt. Die Höhe der Emissionskontingente wird dabei durch umliegende schützenswerte Bebauung begrenzt (vgl. Abschnitt 4.1).

Die Immissionsrichtwerte gelten für die Summe der Geräuschimmissionen aller auf einen Immissionsort einwirkenden gewerblichen Anlagen. Daher müssen in diesem Fall bestehende Bebauungsplangebiete als Vorbelastung berücksichtigt werden.

#### 4.1 Immissionsorte und Immissionsrichtwerte (IRW)

In Anlage 3 sind die – nach gutachterlicher Einschätzung – maßgeblichen Immissionsorte (IO) nach TA Lärm [4] dargestellt.

In Tabelle 3 sind die maßgeblichen Immissionsorte mit ihren Gebietseinstufungen entsprechend BauNVO [12] sowie ihren Immissionsrichtwerten nach TA Lärm [4] dargestellt.

Tabelle 3: Maßgebliche Immissionsorte (IO), Gebietseinstufungen (Nutzung), Höhe und Immissionsrichtwerte (IRW) nach TA Lärm

|               | 10               |         |      |         | IRW     |          | Koordinaten |       |
|---------------|------------------|---------|------|---------|---------|----------|-------------|-------|
| Bez,          | Adresse          | Nutzung | Höhe | tags    | nachts  | Х        | Y           | Z     |
|               |                  |         | [m]  | [dB(A)] | [dB(A)] | [m]      | [m]         | [m]   |
| IO 01         | _                | WA      | 5    | 55      | 40      | 598741,5 | 5352644,5   | 488,8 |
| IO 02         | _                | WA      | 5    | 55      | 40      | 598727,3 | 5352637,1   | 488,1 |
| IO 03         | _                | WA      | 5    | 55      | 40      | 598696,0 | 5352633,4   | 487,6 |
| IO 04         | _                | WA      | 5    | 55      | 40      | 598681,7 | 5352626,0   | 487,5 |
| IO 05         | _                | WA      | 5    | 55      | 40      | 598659,0 | 5352613,7   | 487,7 |
| IO 06         | _                | WA      | 5    | 55      | 40      | 598638,2 | 5352602,9   | 487,5 |
| IO 07         | _                | MI      | 5    | 60      | 45      | 598703,0 | 5352591,4   | 487,2 |
| IO Bestand 01 | Ellzeer Str. 18  | MI      | 5    | 60      | 45      | 598636,8 | 5352570,9   | 487,9 |
| IO Bestand 02 | Ellzeer Str. 16a | MI      | 5    | 60      | 45      | 598667,7 | 5352549,5   | 487,9 |
| IO Bestand 03 | Ellzeer Str. 14  | MI      | 5    | 60      | 45      | 598676,3 | 5352504,7   | 488,1 |
| IO Bestand 04 | Ellzeer Str. 12  | MI      | 5    | 60      | 45      | 598691,9 | 5352488,1   | 488,3 |
| IO Bestand 05 | Schulstraße 11   | MI      | 5    | 60      | 45      | 598750,4 | 5352536,9   | 490,8 |
| IO Bestand 06 | Schulstraße 7    | MI      | 8    | 60      | 45      | 598756,0 | 5352502,1   | 493,7 |
| IO Bestand 07 | Schulstraße 8    | MI      | 5    | 60      | 45      | 598740,5 | 5352478,9   | 490,0 |
| IO Bestand 08 | Schulstraße 9    | MI      | 8    | 60      | 45      | 598735,9 | 5352526,3   | 493,0 |



#### 4.2 Vorbelastung

Auf die Immissionsorte (s. Abschnitt 4.1) wirken zusätzlich zu den Immissionen – verursacht durch das Plangebiet (Zusatzbelastung) – diverse Schallquellen ein, welche ebenfalls nach TA Lärm [4] zu beurteilen sind (Vorbelastung). Als Vorbelastung sind die Emittenten des Bebauungsplangebiets "Mischgebiet an der Ringeisenstraße" anzusehen.

Die Emissionen werden entsprechend der übermittelten Betriebsbeschreibung der Wirth Schreinerei [13] angesetzt. Die Emissionsdaten können der Anlage 1 und den nachfolgenden Tabellen entnommen werden. Die Lage der Quellen kann Anlage 3 (ID siehe Anlage 1) entnommen werden.

Tabelle 4: Emissions-Ansätze für das Schwabenstadel

| Schallquelle                            | Beschreibung                                                                                  | Emission                                                 | Quelle            |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|
| Innenpegel                              | Mittlerer Schalldruckpegel in Lagerbereichen Mittlerer Schalldruckpegel in Werkstattbereichen | $L_1 = 75,0 \text{ dB(A)}$<br>$L_1 = 90,0 \text{ dB(A)}$ | Eigener<br>Ansatz |
| Öffnungen sowie To-<br>re/Türen/Fenster | R' <sub>w</sub> = 0 dB (Tore/Türen/Fenster 4 Stunden im Tagzeitraum geöffnet)                 | -                                                        | -                 |

Tabelle 5: Stellplätze, Parkbewegungen Pkw sowie Fahrbewegungen zu den Stellplätzen

| Schallquelle   | Beschreibung                                    | Emission                            | Quelle |
|----------------|-------------------------------------------------|-------------------------------------|--------|
| Stellplätze    | Zusammengefasstes Verfahren der Parkplatzlärm-  | $L_{WA,1h} = 67,0 dB(A)$            | [14],  |
| Fahr- und      | studie                                          |                                     | [13]   |
| Parkbewegungen | Pkw Stellplätze                                 |                                     |        |
| Pkw            | ■ Zuschlag K <sub>PA</sub> = 4,0 dB             |                                     |        |
|                | • " $K_{StrO} = 0.0 \text{ dB}$                 |                                     |        |
|                | 6 Stellplätze:                                  |                                     |        |
|                | 16 Bewegungen im Tagzeitraum                    |                                     |        |
| Fahrbewegungen | <ul> <li>Geschwindigkeit v ≤ 30 km/h</li> </ul> | Lwa <sup>4</sup> ,1h = 48,0 dB(A)/m | [13]   |
| Pkw            | ■ D <sub>StrO</sub> = 0 dB                      |                                     |        |
|                | Bewegungsanzahl siehe oben Parkbewegun-         |                                     |        |
|                | gen                                             |                                     |        |

Tabelle 6: Emissions-Ansätze für den Lieferverkehr

| Schallquelle  | Beschreibung                                            | Emission             | Quelle |
|---------------|---------------------------------------------------------|----------------------|--------|
| Lieferverkehr | 3 Lkw im Tagzeitraum (davon 1 innerhalb der Ruhezeiten) | -                    | [11]   |
| Lkw           | Be- und Entladung mittels zweier Diesel-                | Lwa,1h = 104,0 dB(A) | [13]   |





| Schallquelle                           | Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Emission                                        | Quelle |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| Be- und Entladung                      | Gabelstapler Einsatzzeit: jeweils 2,5 Stunden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |        |
| Lkw<br>Einzelereignis-<br>se/Rangieren | <ul> <li>Anlassen, L<sub>WA</sub> = 100,0 dB(A),         Dauer 1 s, je 1 Ereignis</li> <li>Türenschlagen, L<sub>WA</sub> = 100,0 dB(A),         Dauer 1 s, je 2 Ereignisse</li> <li>Betriebsbremse, L<sub>WA</sub> = 108,0 dB(A),         Dauer 1 s, je 1 Ereignis</li> <li>Leerlauf, L<sub>WA</sub> = 94,0 dB(A),         Dauer 60 s, je 1 Ereignis</li> <li>Rangieren, L<sub>WA</sub>, 1h = 67,0 dB(A) / m         Lkw mit Motorleistung ≥ 105 kW         mittlere Wegstrecke Rangieren 50 m</li> <li>Rückfahrwarner, L<sub>WA</sub> = 100,0 dB(A),         Dauer 30 s, je 1 Ereignis</li> </ul> | L <sub>WA,1h</sub> = 86,0 dB(A)                 | [12]   |
| Lkw<br>Fahrgeräusch                    | Lkw mit Motorleistung ≥ 105 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L <sub>WA</sub> ', <sub>1h</sub> = 63,0 dB(A)/m | [12]   |

Diese Schallquellen wurden in das erstellte Rechenmodell eingebunden. Die Schallausbreitungsberechnungen erfolgen nach der Richtlinie DIN ISO 9613-2 [19] mittels CadnaA [16] in der aktuellen Programmversion. Unter Berücksichtigung der Pegelminderungen über den Abstand wurden die Teilimmissionspegel jeder Einzelquelle bestimmt. Hierbei erfolgt keine meteorologische Korrektur (entspricht Mitwindsituation in alle Ausbreitungsrichtungen). Durch die energetische Addition der berechneten Teilbeurteilungspegel der berücksichtigten Einzelschallquellen ergeben sich die gesamten Beurteilungspegel an den maßgebenden Immissionsorten.

Die berechneten Beurteilungspegel L<sub>r</sub> an den maßgeblichen Immissionsorten (IO) sind den Immissionsrichtwerten nach TA Lärm in der nachfolgenden Tabelle 7 gegenübergestellt.

Tabelle 7: Immissionen – Vorbelastung (Betrieb)

| Immissions    | - 1     | RW    | L <sub>vor</sub> |       |        |
|---------------|---------|-------|------------------|-------|--------|
| Bezeichnung   | Nutzung | tags  | nachts           | tags  | nachts |
| Bezeichnung   | Nutzung | dB(A) | dB(A)            | dB(A) | dB(A)  |
| IO 01         | WA      | 55    | 40               | 46,2  | -      |
| IO 02         | WA      | 55    | 40               | 50,2  | -      |
| IO 03         | WA      | 55    | 40               | 52,3  | -      |
| IO 04         | WA      | 55    | 40               | 52,2  | -      |
| IO 05         | WA      | 55    | 40               | 51,1  | -      |
| IO 06         | WA      | 55    | 40               | 48,5  | -      |
| IO 07         | MI      | 60    | 45               | 60,0  | -      |
| IO Bestand 01 | MI      | 60    | 45               | 45,2  | -      |





| Immissions    | II      | RW    | L <sub>vor</sub> |       |        |
|---------------|---------|-------|------------------|-------|--------|
| Bezeichnung   | Nutzung | tags  | nachts           | tags  | nachts |
| Bezeronnung   | Nutzung | dB(A) | dB(A)            | dB(A) | dB(A)  |
| IO Bestand 02 | MI      | 60    | 45               | 55,5  | -      |
| IO Bestand 03 | MI      | 60    | 45               | 56,7  | -      |
| IO Bestand 04 | MI      | 60    | 45               | 55,9  | -      |
| IO Bestand 05 | MI      | 60    | 45               | 56,0  | -      |
| IO Bestand 06 | MI      | 60    | 45               | 43,5  | -      |
| IO Bestand 07 | MI      | 60    | 45               | 36,7  | -      |
| IO Bestand 08 | MI      | 60    | 45               | 49,3  | -      |

Die Tabelle 7 zeigt die Einhaltung der Immissionsrichtwerte durch den angesetzten Betrieb an allen betrachteten Immissionsorten.

Die zulässigen Immissionsbeiträge verschiedener Teilflächen werden nachfolgend für die Beurteilungszeiten Tag und Nacht bestimmt.

#### 4.3 Emissionskontingentierung

Die Geräuschkontingentierung erfolgt gemäß DIN 45691 [9] Abschnitt 4.

Die Ausbreitungsberechnungen werden mit dem EDV-Programm CadnaA [20] durchgeführt. Die einzelnen Gebietsflächen des Bebauungsplans werden dabei als Bebauungsplanquellen definiert. Die Schallausbreitungsberechnung erfolgt normgerecht, hierbei wird ausschließlich das Abstandsmaß unter Ansatz einer Vollkugelausbreitung berücksichtigt.

Die der Kontingentierung zugrundeliegenden Teilflächen sind in Anlage 3 dargestellt. Gemäß Norm wurden Flächen im Plangebiet, für die eine gewerbliche Nutzung ausgeschlossen ist (z. B. Grünflächen, Verkehrsflächen und Gemeinbedarfsflächen), bei der Kontingentierung nicht berücksichtigt.

Das Abstandsmaß ΔL<sub>i</sub>,j für jede Teilfläche ergibt sich gemäß DIN 45691 zu:

$$\Delta L_{i,j} = -10 \cdot \lg \sum_{k} \left( \frac{S_k}{4\pi s_{k,j}^2} \right)$$

mit S<sub>i</sub>:

S<sub>i</sub>: Flächengröße der betrachteten Teilfläche in m²

 $s_{i,j}$ : horizontaler Abstand des Immissionsorts vom Schwerpunkt der Teilfläche in m $\sum_k (S_k) = S_i$ 

Die damit für die einzelnen Flächen berechneten zulässigen Immissionsanteile sind von den tatsächlichen Umgebungsverhältnissen auf dem Schallausbreitungsweg unabhängig<sup>2</sup>.

Abschirmungen und Reflexionen wirken sich erst bei der Verträglichkeitsprüfung für ein konkretes Vorhaben aus. Hierbei wird überprüft, ob der reale Betrieb den aus seinem Betriebsgrundstück resultierenden zulässigen Immissionsanteil einhält. In günstigen Fällen können beispielsweise unter Ausnutzung von Abschirmwirkungen auf dem Ausbreitungsweg die real abgestrahlten flächenbezogenen Schallleistungen über den hier festzulegenden Emissionskontingenten L<sub>EK</sub> lie-



Da die Immissionsrichtwerte für die Summe der Geräuschimmissionen aller auf einen Immissionsort einwirkenden gewerblichen Anlagen gelten, dürfen unter Berücksichtigung der Vorbelastung (s. Abschnitt 4.2) die zu kontingentierenden Flächen die Immissionsrichtwerte nicht voll ausschöpfen.

Die immissionsseitig einzuhaltenden Planwerte  $L_{\text{Pl}}$  sind nach Norm entsprechend nachfolgend dargestellter Formel zu berechnen und auf ganze Dezibel gerundet anzugeben.

$$L_{PI,j} = 10 \cdot \log(10^{0.1 \cdot L_{GI,j}} - 10^{0.1 \cdot L_{vor,j}})$$

mit L<sub>GI</sub>: Immissionsrichtwert Gesamtbelastung

Lvor: Teilpegel der Vorbelastung

An den ausgewählten, maßgebenden Immissionsorten ergeben sich die in Tabelle 8 aufgeführten Planwerte L<sub>Pl</sub>.

Tabelle 8: Planwerte L<sub>Pl</sub> zur Berücksichtigung der Vorbelastung

| Immissions    | L <sub>GI</sub> |       | L      | -vor  | L <sub>Pl</sub> |       |        |
|---------------|-----------------|-------|--------|-------|-----------------|-------|--------|
| Bezeichnung   | Nutzung         | tags  | nachts | tags  | nachts          | tags  | nachts |
| Bezeichhung   |                 | dB(A) | dB(A)  | dB(A) | dB(A)           | dB(A) | dB(A)  |
| IO 01         | WA              | 55    | 40     | 46,1  | -               | 54    | 40     |
| IO 02         | WA              | 55    | 40     | 50,1  | -               | 53    | 40     |
| IO 03         | WA              | 55    | 40     | 51,4  | -               | 53    | 40     |
| IO 04         | WA              | 55    | 40     | 51,1  | -               | 53    | 40     |
| IO 05         | WA              | 55    | 40     | 51,9  | -               | 52    | 40     |
| IO 06         | WA              | 55    | 40     | 51,2  | -               | 53    | 40     |
| IO 07         | WA              | 55    | 40     | 51,5  | -               | 52    | 40     |
| IO 08         | WA              | 55    | 40     | 52,8  | -               | 51    | 40     |
| IO 09         | WA              | 55    | 40     | 54,8  | -               | 42    | 40     |
| IO 10         | MI              | 60    | 45     | 61,1  | -               | -     | -      |
| IO 11         | MI              | 60    | 45     | 59,7  | -               | -     | -      |
| IO Bestand 01 | MI              | 60    | 45     | 45,1  | -               | 60    | 45     |
| IO Bestand 02 | MI              | 60    | 45     | 55,4  | -               | 58    | 45     |
| IO Bestand 03 | MI              | 60    | 45     | 56,7  | -               | 57    | 45     |
| IO Bestand 04 | MI              | 60    | 45     | 55,9  | -               | 58    | 45     |
| IO Bestand 05 | MI              | 60    | 45     | 56,1  | -               | 58    | 45     |
| IO Bestand 06 | MI              | 60    | 45     | 43,6  | -               | 60    | 45     |
| IO Bestand 07 | MI              | 60    | 45     | 36,3  | -               | 60    | 45     |
| IO Bestand 08 | MI              | 60    | 45     | 64,7  | -               | 50    | 45     |

Unter Maßgabe der Einhaltung der Planwerte L<sub>Pl</sub> wurden für die einzelnen Teilflächen (s. Anlage 3) folgende zulässige Emissionskontingente L<sub>EK</sub> ermittelt:



Tabelle 9: Emissionskontingente Lek

|            | Emissions         | kontingent        | Fläche | Schallleistu | ıngspegel |
|------------|-------------------|-------------------|--------|--------------|-----------|
| Teilfläche | L <sub>EK,T</sub> | L <sub>EK,N</sub> |        | $L_{W,T}$    | $L_{W,N}$ |
|            | dB(A)             | dB(A)             | m²     | dB(A)        | dB(A)     |
| MI1        | 58                | 43                | 1898   | 90,8         | 75,8      |
| MI2        | 53                | 38                | 620    | 80,9         | 65,9      |
| MI3        | 57                | 42                | 948    | 86,8         | 71,8      |
| MI4        | 62                | 47                | 909    | 91,6         | 76,6      |

Basierend auf den in Tabelle 9 dargestellten  $L_{EK}$  erfolgt abschließend eine Ausbreitungsberechnung nach den Maßgaben der DIN 45691 (Abstandsmaß bei Vollkugelausbreitung). Als Berechnungsergebnis erhält man die mit den Emissionskontingenten  $L_{EK}$  korrespondierenden Immissionskontingente  $L_{IK}$  an den betrachteten Immissionsorten. In Tabelle 10 werden die Immissionskontingente  $L_{IK}$  den Planwerten  $L_{PI}$  gegenübergestellt.

Tabelle 10: Planwerte  $L_{Pl}$ , Immissionskontingente  $L_{IK}$  und Pegeldifferenz  $L_{IK} - L_{Pl}$ 

|               | ı     | L <sub>PI</sub> | ı     | Lik    | L <sub>IK</sub> | – L <sub>PI</sub> |
|---------------|-------|-----------------|-------|--------|-----------------|-------------------|
| Immissionsort | tags  | nachts          | tags  | nachts | tags            | nachts            |
|               | dB(A) | dB(A)           | dB(A) | dB(A)  | dB              | dB                |
| IO 01         | 54    | 40              | 50,4  | 35,4   | -3,6            | -4,6              |
| IO 02         | 53    | 40              | 52,3  | 37,3   | -0,7            | -2,7              |
| IO 03         | 52    | 40              | 51,1  | 36,1   | -0,9            | -3,9              |
| IO 04         | 52    | 40              | 51,5  | 36,5   | -0,5            | -3,5              |
| IO 05         | 53    | 40              | 52,0  | 37,0   | -1,0            | -3,0              |
| IO 06         | 54    | 40              | 51,9  | 36,9   | -2,1            | -3,1              |
| IO 07         | -     | 1               | -     | 1      | -               | -                 |
| IO Bestand 01 | 60    | 45              | 54,4  | 39,4   | -5,6            | -5,6              |
| IO Bestand 02 | 58    | 45              | 50,9  | 35,9   | -7,1            | -9,1              |
| IO Bestand 03 | 57    | 45              | 44,2  | 29,2   | -12,8           | -15,8             |
| IO Bestand 04 | 58    | 45              | 42,6  | 27,6   | -15,4           | -17,4             |
| IO Bestand 05 | 58    | 45              | 44,4  | 29,4   | -13,6           | -15,6             |
| IO Bestand 06 | 60    | 45              | 41,8  | 26,8   | -18,2           | -18,2             |
| IO Bestand 07 | 60    | 45              | 41,0  | 26,0   | -19,0           | -19,0             |
| IO Bestand 08 | 60    | 45              | 44,3  | 29,3   | -15,7           | -15,7             |

Die Tabelle 10 zeigt die Einhaltung der Planwerte  $L_{\text{Pl}}$  durch die angesetzten Emissionskontingente  $L_{\text{EK}}$  an allen betrachteten Immissionsorten.

# 5 Textvorschläge für den Bebauungsplan

Nachfolgend werden Textvorschläge für die Begründung und Festsetzungen bzgl. des Schallimmissionsschutzes formuliert.



#### 5.1 Begründung

Der Markt Neuburg a. d. Kammel plant die Aufstellung des Bebauungsplans "Peter & Paul Nord West" im Ortsteil Wattenweiler des Marktes Neuburg a. d. Kammel. Im Zuge des Bebauungsplanverfahrens sind u. a. auch die schalltechnischen Auswirkungen der Planung zu begutachten. Der Schallschutz wird im Rahmen von Bauleitplanverfahren für die Praxis durch die DIN 18005 – Schallschutz im Städtebau konkretisiert. In der DIN 18005 sind Orientierungswerte für die Beurteilung von Geräuscheinwirkungen in Anhängigkeit von schutzbedürftigen Nutzungen (z.B. Baugebiete) aufgeführt.

Im Rahmen des Bebauungsplanverfahrens wurde eine schalltechnische Untersuchung erstellt, in der eine Lärmkontingentierung unter Berücksichtigung aller Teilflächen des Plangebiets durchgeführt wurde. Durch Festsetzung entsprechender Emissionskontingente L<sub>EK</sub> für die Zeitbereiche tags und nachts wird die Einhaltung der Anforderungen der TA Lärm im Umfeld des Plangebiets sichergestellt.

#### 5.2 Festsetzungen

(1) Betriebe, Anlagen und Nutzungen sind nur zulässig, wenn deren von dem jeweiligen gesamten Betriebsgrundstück abgestrahlten Schallemissionen die nachfolgend genannten Emissionskontingente L<sub>EK</sub> nach DIN 45691 vom Dezember 2006 weder tags (06:00 Uhr bis 22:00 Uhr) noch nachts (22:00 Uhr bis 06:00 Uhr) überschreiten.

|            | Emissionsk        | ontingent         | Fläche |
|------------|-------------------|-------------------|--------|
| Teilfläche | L <sub>EK,T</sub> | L <sub>EK,N</sub> |        |
|            | dB(A)             | dB(A)             | m²     |
| MI1        | 58                | 43                | 1898   |
| MI2        | 53                | 38                | 620    |
| MI3        | 57                | 42                | 948    |
| MI4        | 62                | 47                | 909    |

- (2) Die Prüfung der Einhaltung erfolgt nach DIN 45691:2006-12, Abschnitt 5.
- (3) Ein Vorhaben erfüllt auch dann die schalltechnischen Festsetzungen des Bebauungsplanes, wenn der Beurteilungspegel L<sub>r</sub> den Immissionsrichtwert nach TA Lärm um mindestens 15 dB unterschreitet (Relevanzgrenze).

## 6 Zusammenfassung und Fazit

Der Markt Neuburg a. d. Kammel plant die Aufstellung des Bebauungsplans "Peter & Paul Nord West" im Ortsteil Wattenweiler des Marktes Neuburg a. d. Kammel [1] und damit die Entwicklung von Wohn- und Mischgebietsflächen (Gebietsausweisung WA und MI).

Hinsichtlich des Immissionsschutzes sollten Emissionskontingente für das Mischgebiet festgelegt werden, um sicherzustellen, dass in den angrenzenden Gebieten (bestehende und geplante Wohnbebauung) die Orientierungswerte nach DIN 18005 [2], [3] bzw. die wertgleichen Immissionsrichtwerte nach TA Lärm [4] eingehalten werden.

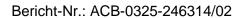


Eine abschließende Bewertung obliegt der zuständigen Genehmigungsbehörde.

Greifenberg, den 31.03.2025

B.Sc. Stefan Herrmann




# Anlagen

Anlage 1 Emissionsdaten

Anlage 2 Teilpegellisten

Anlage 3 Lageplan

Anlage 4 Berechnungskonfiguration





#### Anlage 1 Emissionsdaten

| $\overline{}$  |
|----------------|
| ᇒ              |
| <u>_</u>       |
| =              |
| ܣ              |
| =              |
| ᆂ              |
| ᅙ              |
| _              |
| $\overline{x}$ |
| Ψ              |
| _              |
| O              |
| .≍             |
| <u></u>        |
|                |
| <del></del>    |
| ᇤ              |

Linienquellen

|                                    | ;                |         |          |                                       |          |                    |                           |             |          |                    |             |                          |               |                        |           |             |       |                        |            |       |               |            |                   |         |           |      |                   |
|------------------------------------|------------------|---------|----------|---------------------------------------|----------|--------------------|---------------------------|-------------|----------|--------------------|-------------|--------------------------|---------------|------------------------|-----------|-------------|-------|------------------------|------------|-------|---------------|------------|-------------------|---------|-----------|------|-------------------|
| Bezeichnung Sel. M.                | M.               | Sc      | hallleis | Schallleistung Lw                     | Schali   | Schallleistung Lw' | g Lw'                     | _           | Lw/Li    |                    | ᇫ           | Korrektur                | Scha          | Schalldämmung Dämpfung | ng Dämp   | fung        | Ē     | Einwirkzeit            | 8          | Freq. | q. Richtw.    |            | Bew. Punktquellen | اleull€ | en        |      |                   |
|                                    |                  | Tag     | 1 Abe    | Tag Abend Nacht Tag Abend Nach        | Tag      | Abend              | Nacht                     | Typ         | Wert     | Wert norm.         | Tag ∤       | Abend Nacht              | <del>بـ</del> | Fläche                 |           | _           | Tag   | Ruhe                   | Nacht      |       |               |            | Anzahl            |         | Geschw.   |      |                   |
|                                    |                  | (dB/    | ) (dB,   | (dBA)   (dBA)   (dBA)   (dBA)   (dBA) | (dBA)    | (dBA)              | (dBA)                     |             |          | dB(A)              | dB(A)       | dB(A) dB(A)              | _             | (m²)                   |           | r)          | (min) | (min) (n               | (min) (dB) | (Hz)  | :             | Tag        | Abend             | Nacht   | (km/h)    |      |                   |
| Pkw - Fahrt                        | ~ !07!Pkw_F 72.1 | F 72.   | .1 67    | 67.3 -38.7                            | 58.8     | 54.0               | -52.0                     | -52.0 Lw-PQ | Pkw      | 92.8               | 0.0         | 0.0 0.0                  |               |                        |           | 9           | 00.09 | 00.09                  | 0.00       | 0.0   | (keine)       | 9) 12.0    | 4.0               | 0.0     | 30.0      |      |                   |
| Lkw - Fahrt                        | ~ !07!Lkw_F      |         | .4 85    | 88.4 85.4 -17.6                       | 0.69     | 0.99               | -37.0                     | -37.0 Lw-PQ | Lkw      | 103.0              | 0.0         | 0.0 0.0                  | 0             |                        |           | 9           | 00.09 | 00.09                  | 0.00       | 0.0   | (keine)       | 9) 4.0     | 2.0               | 0.0     | 10.0      |      |                   |
|                                    |                  |         |          |                                       |          |                    |                           |             |          |                    |             |                          |               |                        |           |             |       |                        |            |       |               |            |                   |         |           |      |                   |
| Flächenquellen                     | )llen            |         |          |                                       |          |                    |                           |             |          |                    |             |                          |               |                        |           |             |       |                        |            |       |               |            |                   |         |           |      |                   |
| Bezeichnung                        | Bunu             | ŭ       | Sel. M.  | ₽                                     | Sc       | Schallleistung I   | tung Lw                   |             | hallleis | Schallleistung Lw' | _           | Lw / Li                  |               | _                      | Korrektur | tur         | Schal | Schalldämmung Dämpfung | 1 Dämpfui  | J G   | Einwirkzeit   | zeit       | 8                 | Freq.   | . Richtw. | Bew. | Bew. Punktquellen |
|                                    |                  |         |          |                                       | Tag      | 3 Aber             | Tag   Abend   Nacht   Tag | ht Tag      | g Abe    | Abend Nacht        | ht Typ      | o Wert                   |               | norm. Tag              | g Aber    | Abend Nacht | R     | Fläche                 |            | Te    | Tag Ruhe      | ne Nacht   | Į.                |         |           |      | Anzahl            |
|                                    |                  |         | F        |                                       | (dB/     | (dBA) (dBA)        | 4) (dBA)                  | 4) (dBA)    | 4) (dBA) | A) (dBA)           | (F)         |                          | ō             | dB(A) dB(A)            | A) dB(A)  | () dB(A)    |       | (m²)                   |            | (min) | in) (min)     | (min) (r   | (dB) (l           | (HZ)    |           | Tag  | Abend Nacht       |
| Pkw - Stellplätze (6)              |                  |         | 2        | 107! Pkw_Stp 77.8                     | Stp 77.  | .8 73.0            | .0 -33.0                  | .0 58.0     |          | 53.3 -52           | -52.8 Lw-PQ | Pkw                      |               | 0.79                   | 0.0       | 0.0 0.0     |       |                        |            | 99    | 00.09 00.09   |            | 0.00              | 0.0     | (keine)   | 12.0 | 4.0               |
| Lkw - Einzelereignisse/Rangieren   | sse/Rangiert     | Jue Jue | ~        | ~ !07!Lkw_ER 89.0                     | ER 89.   | .0 86.0            | .0 -14.0                  | .0 68.3     |          | 65.3 -34.7         | .7 Lw-PQ    | PQ Lkw                   |               | 86.0 C                 | 0.0       | 0.0 0.0     |       |                        |            | 9     | 00.09   60.00 | 00.00      |                   | 0.0     | (keine)   | 2.0  | 1.0               |
| Staplerverkehr (Be-/Entladung Lkw) | -/Entladung L    | -kw)    | 1        | ~ !07!Stapler                         | ır 107.0 |                    | 4.0 4.                    | 4.0 79.3    |          | -23.7 -23          | .7 Lw-F     | -23.7 Lw-PQ Gabelstapler | $\overline{}$ | 104.0 C                | 0.0       | 0.0 0.0     |       |                        |            | 150   | 150.00 0.     | 0.00 00.00 |                   | 0.0     | (keine)   | 2.0  | 0.0               |

# Flächenquellen vertikal

| 07!VQ01 82.0 82.0 82.0 69.0 69.0 69.0 69.0 Li Halle 75.0 0.0 0.0 0.0 0.0 0.0 0 20.08 780.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~  1071VQ03   81.0   81.0   81.0   81.0   69.0   69.0   69.0   L   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  1071VQ04 81.0 81.0 81.0 81.0 69.0 69.0 69.0 Li Halle 75.0 0.0 0.0 0.0 0.0 0 16.00   16.00   210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~   1071VQ05   86.6   86.6   86.6   69.0   69.0   69.0   Li Halle   75.0   0.0   0.0   0.0   0   57.20   210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nerkstatt Süd - Tor Nord ~ [107!VQ09 97.0] 97.0 97.0 84.0 84.0 84.0 Li Halle 90.0 0.0 0.0 0.0 0.0 0.0 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bezeichnung Lager Ost - Öffnung Lager Ost - Tor 01 Lager Ost - Tor 02 Lager Ost - Tor 03 Lager West - Öffnung Werkstatt Nord - Fenster West Werkstatt Nord - Fenster West Werkstatt Süd - Fenster West | <u></u>  |   |              | Heistun   Abend   (4BA)   (4 |          |         |         | Hacht dacht dacht (49.0 69.0 69.0 69.0 69.0 69.0 69.0 84.0 84.0 |         |      | Tag<br>dB(A)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | [방[송]명]        | Macht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | Fläche   Fläche   (m²)   20.08   (m²)   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.0 | Dämpfung | Tag<br>(min<br>780.0<br>210.0<br>210.0<br>210.0<br>210.0<br>210.0 |              | Einwirkzei  Ruhe  Ruhe  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00  30.00 | Ruhe N (min) (r (min) (r (min) 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 | Einwirkzeat Ruhe Nacht (min) (df (mi | Ruhe   Nacht   Ruhe   Nacht   Ruhe   Nacht   Su 00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   30.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|-----------------------------------------------------------------|---------|------|--------------------------------------------------------|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1071VQ01   82.0   82.0   82.0   69.0   69.0   69.0   Li Halle   75.0   0.0   0.0   0.0   0.0   0.0   780.00   780.00   1071VQ02   81.0   81.0   81.0   69.0   69.0   69.0   Li Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0 | 1071VQ01   82.0   82.0   82.0   82.0   69.0   69.0   Li Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0    | 1971/QQ1   82.0   82.0   82.0   82.0   83.0   83.0   83.0   83.0   14 Alle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  | - IOTYVQQQ 82.0 82.0 82.0 69.0 69.0 1 Halle 75.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 | +                                                                                                                                                                                                      |          |   | Tag<br>(dBA) | Abend (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2      |         | Abend N | dBA)                                                            | ğ.<br>M |      | Tag<br>dB(A)                                           | Abend<br>dB(A) | Nacht<br>JB(A)                               | Fläche (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Tag<br>(min)                                                      | Ruhe<br>(min |                                                                                                                                 | 뿔 드                                                                                        | Nacht (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nacht (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) dB(A) dB(A) dB(A) dB(A) (dBA) (m²) (min) n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA)   dB(A) (dB(A) dB(A) dB(A) dB(A) (dBA) (  | (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA)   dB(A)   dB(A)   dB(A)   dB(A)   (dBA) (dBA) (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA)   (dBA) (dBA) (dBA)   (dBA) (dBA) (dBA)   (dBA) (dBA) (dBA) (dBA)   (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (d  | (dBA)   (dBA | (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA)   (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (d   |                                                                                                                                                                                                        | T        |   | Tag          | Abend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        | Tag A   | Abend N | Jacht                                                           | yp We   | -    | ١.                                                     | Abend          |                                              | Fläche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | Tag                                                               | Ruhe         |                                                                                                                                 |                                                                                            | Nacht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nacht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Abend Nacht Tag   Abend   Nacht Typ   Wert   norm.         Tag   Abend   Nacht   Typ   Wert   norm.         Tag   Abend   Nacht   Typ   Wert   Nacht   Typ   Wert   Nacht   Typ   Wert   Nacht   Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Tag   | Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Tag   | Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Typ   Werl   norm.   Tag   Abend   Nacht   Tag   Abend   Nacht   Tag   Tag  | Tag   Abend Nacht   Tag   Ta   |                                                                                                                                                                                                        |          |   | Scha         | <b>Meistung</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dashv$ | Schalli | eistung | <br>                                                            | ۲       | v/Li | _                                                      | (orrektu       |                                              | nalldämmung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dämpfung |                                                                   | inwirk       | Ze                                                                                                                              | zeit                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1071VQ03 81.0 81.0 81.0 69.0 69.0 69.0 69.0 Li Halle 75.0 0.0 0.0 0.0 0 1 16.00 20.0 0.0 0.0 0.0 10.0 0 10.0 0 20.00 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1071VQ03 81.0 81.0 81.0 69.0 69.0 69.0   Halle 75.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1071VQQQ3   81.0   81.0   81.0   89.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.00   16.   |                                                                                                                                                                                                        | $\vdash$ |   | ╙            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.0     | 0.69    | 0.69    | 0.69                                                            |         |      |                                                        |                |                                              | 16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 210.00                                                            | 30.00        | 0.00                                                                                                                            | $\overline{}$                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 81.0   81.0   81.0   86.0   69.0   69.0   L   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1071VQ04   81.0   81.0   81.0   69.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  | 1071VQ05  86.6   86.6   86.6   69.0   69.0   69.0   Li Halle   75.0   0.0   0.0   0.0   0.0   57.20   210.00   30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ [107IVQ07]         98.0         98.0         84.0         84.0         84.0         Li         Halle         90.0         0.0         0.0         0.0         0.0         24.97           ~ [107IVQ08]         98.0         98.0         84.0         84.0         Li         Halle         90.0         0.0         0.0         0.0         0.0         24.96           ~ [107IVQ08]         97.0         97.0         84.0         Li         Halle         90.0         0.0         0.0         0.0         0.0         24.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |          |   |              | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.0     | 84.0    | 84.0    | 84.0                                                            |         |      |                                                        |                |                                              | 24.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 210.00                                                            | 30.00        | 0.00                                                                                                                            |                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0 <th< td=""><td> 1071VQ04   81.0   81.0   81.0   69.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0</td><td> 1071VQ05   86.6   86.6   86.6   86.6   86.6   84.0   84.0   84.0   1   Halle   90.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0</td><td> 1071VQ06   98.0   98.0   98.0   84.0   84.0   84.0   1   Halle   90.0   0.0   0.0   0.0   24.97   21.070   30.00  </td><td> 1071VQ08   98.0   98.0   98.0   84.0   84.0   84.0   1 Halle   90.0   0.0   0.0   0.0   0   24.96    </td><td>st</td><td></td><td>_</td><td></td><td>0.86</td><td>98.0</td><td>84.0</td><td>84.0</td><td>84.0</td><td></td><td></td><td></td><td></td><td></td><td>24.97</td><td></td><td>210.00</td><td>30.00</td><td>0.00</td><td></td><td>3.0</td><td>3.0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1071VQ04   81.0   81.0   81.0   69.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0  | 1071VQ05   86.6   86.6   86.6   86.6   86.6   84.0   84.0   84.0   1   Halle   90.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 | 1071VQ06   98.0   98.0   98.0   84.0   84.0   84.0   1   Halle   90.0   0.0   0.0   0.0   24.97   21.070   30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1071VQ08   98.0   98.0   98.0   84.0   84.0   84.0   1 Halle   90.0   0.0   0.0   0.0   0   24.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | st                                                                                                                                                                                                     |          | _ |              | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.0     | 84.0    | 84.0    | 84.0                                                            |         |      |                                                        |                |                                              | 24.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 210.00                                                            | 30.00        | 0.00                                                                                                                            |                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0 <th< td=""><td>  1071YQQ4   81.0   81.0   81.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0</td><td>- !07!VQ05         86.6         86.6         86.6         86.0         69.0         69.0         Halle         75.0         0.0         0.0         0.0         57.20         210.00         30.00           - !07!VQ06         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00           -   107!VQ07         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00</td><td>- 107!VQ06         98.0         98.0         84.0         84.0         84.0         Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00           - 107!VQ07         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00</td><td> 1071VQ09  97.0  97.0  97.0  84.0  84.0  84.0  Li  Halle  90.0  0.0  0.0  0.0 0   20.00 </td><td></td><td></td><td>_</td><td></td><td></td><td>98.0</td><td>84.0</td><td>84.0</td><td>84.0</td><td></td><td></td><td></td><td></td><td></td><td>24.96</td><td></td><td>210.00</td><td>30.00</td><td>0.00</td><td>.,</td><td>3.0</td><td>3.0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1071YQQ4   81.0   81.0   81.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   | - !07!VQ05         86.6         86.6         86.6         86.0         69.0         69.0         Halle         75.0         0.0         0.0         0.0         57.20         210.00         30.00           - !07!VQ06         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00           -   107!VQ07         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 107!VQ06         98.0         98.0         84.0         84.0         84.0         Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00           - 107!VQ07         98.0         98.0         84.0         84.0         14 Halle         90.0         0.0         0.0         0.0         24.97         210.00         30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1071VQ09  97.0  97.0  97.0  84.0  84.0  84.0  Li  Halle  90.0  0.0  0.0  0.0 0   20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |          | _ |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.0     | 84.0    | 84.0    | 84.0                                                            |         |      |                                                        |                |                                              | 24.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 210.00                                                            | 30.00        | 0.00                                                                                                                            | .,                                                                                         | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0         81.0 <th< td=""><td>  1071VGOV4   81.0   81.0   81.0   69.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.</td><td>  -   1071/VGOS   86.6   86.6   86.6   86.6   86.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0</td><td>- IOT/VQ06         98.0         98.0         84.0         84.0         84.0         I Halle         90.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>0.76</td><td>84.0</td><td>84.0</td><td>84.0</td><td>Li Ha</td><td></td><td></td><td></td><td></td><td>20.00</td><td></td><td>210.00</td><td>30.00</td><td>0.00</td><td></td><td>3.0</td><td>3.0</td></th<> | 1071VGOV4   81.0   81.0   81.0   69.0   69.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.  | -   1071/VGOS   86.6   86.6   86.6   86.6   86.0   69.0   69.0   1   Halle   75.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   | - IOT/VQ06         98.0         98.0         84.0         84.0         84.0         I Halle         90.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |          | _ |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.76     | 84.0    | 84.0    | 84.0                                                            | Li Ha   |      |                                                        |                |                                              | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 210.00                                                            | 30.00        | 0.00                                                                                                                            |                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(keine)
(keine)
(keine)
(keine)
(keine)
(keine)
(keine)
(keine)

# **BPlanquellen**

| Bezeichnung Sel. | Sel. | ž | ₽      |       |       | Zeitrau | Zeitraum Tag |        |        |       | . 4   | Zeitraur | Zeitraum Nacht |        |        | Fläche  |
|------------------|------|---|--------|-------|-------|---------|--------------|--------|--------|-------|-------|----------|----------------|--------|--------|---------|
|                  |      |   |        | Lw.   | Lw    | Lmin    | Lmax         | Lknick | Kknick | <br>  | Lw    | Lmin     | Lmax           | Lknick | Kknick |         |
|                  |      |   |        | (dBA) | (dBA) | (dBA)   | (dBA)        | (dBA)  | (%)    | (dBA) | (dBA) | (dBA)    | (dBA)          | (dBA)  | (%)    | (m²)    |
| MI1              |      | Ē | 06!MI1 | 58.0  | 8.06  | 55.0    | 65.0         | 0.09   | 80     | 43.0  | 75.8  | 55.0     | 65.0           | 0.09   | 80     | 1897.68 |
| MI2              |      | _ | 06!MI2 | 53.0  | 80.9  | 55.0    | 65.0         | 0.09   | 80     | 38.0  | 62.9  | 55.0     | 65.0           | 0.09   | 80     | 620.01  |
| MI3              |      | _ | 61MI3  | 57.0  | 8.98  | 55.0    | 65.0         | 0.09   | 80     | 42.0  | 71.8  | 55.0     | 65.0           | 0.09   | 80     | 947.57  |
| MI4              |      | F | 06!MI4 | 62.0  | 91.6  | 55.0    | 65.0         | 0.09   | 80     | 47.0  | 9.92  | 55.0     | 65.0           | 0.09   | 80     | 909.31  |

246314\_02\_B.docx Anlage 1

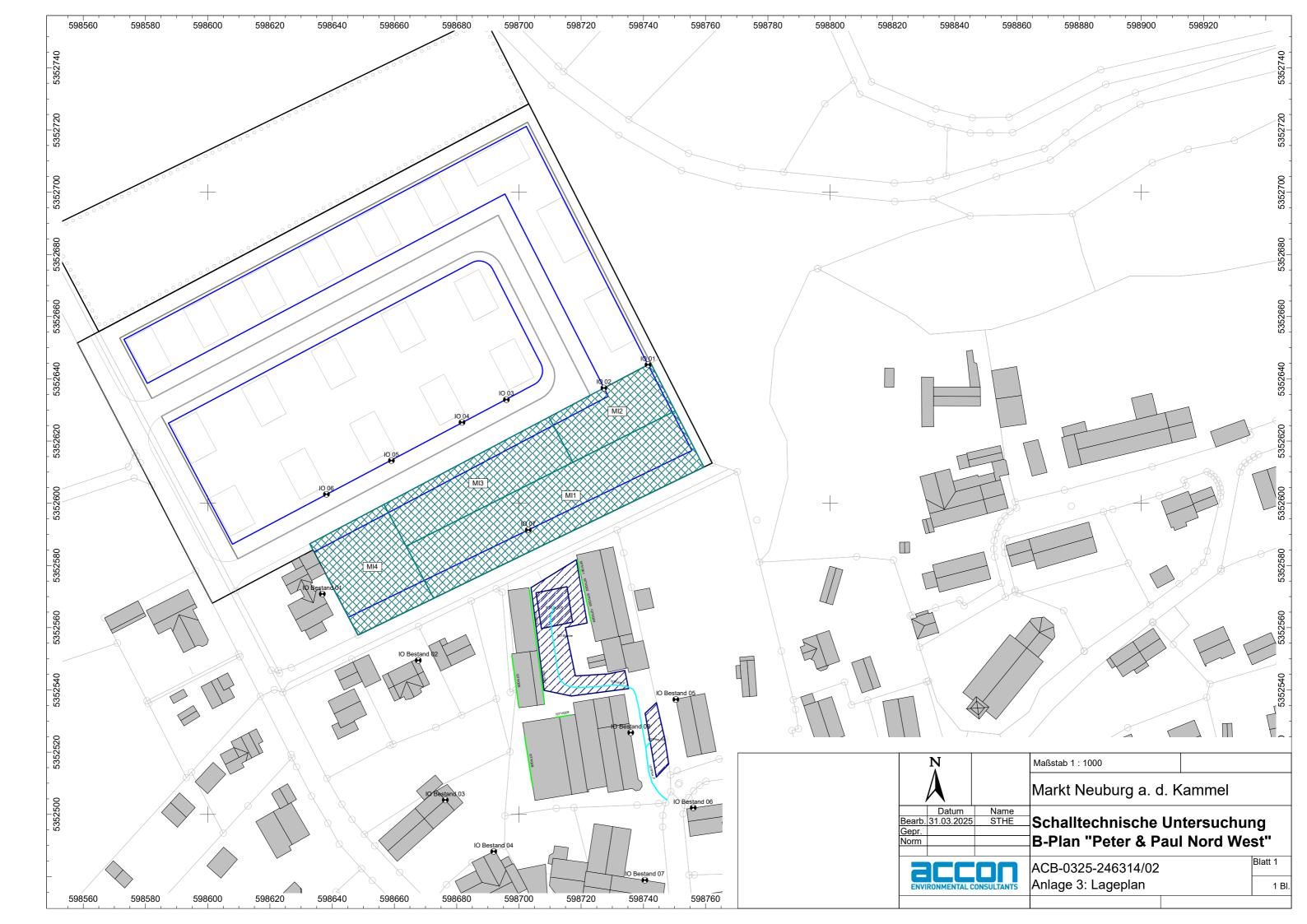


# Bericht-Nr.: ACB-0325-246314/02 Anlage 2 Teilpegellisten

# Vorbelastung

| Quelle                               |    |             |      |       |      |       |       |       |      |       |      |         |      |         |      |       | Te       | eilpegel |         |        |         |        |         |        |        |         |        |         |         |        |               |
|--------------------------------------|----|-------------|------|-------|------|-------|-------|-------|------|-------|------|---------|------|---------|------|-------|----------|----------|---------|--------|---------|--------|---------|--------|--------|---------|--------|---------|---------|--------|---------------|
| Bezeichnung                          | M. | ID          | IO   | 01    | IC   | 02    | IO 0  | )3    | 10 ( | )4    | IO   | 05      | IO 0 | 6       | 10 0 | )7    | IO Besta | and 01   | IO Best | and 02 | IO Best | and 03 | IO Best | and 04 | IO Bes | tand 05 | IO Bes | tand 06 | IO Best | and 07 | IO Bestand 08 |
|                                      |    |             | Tag  | Nacht | Tag  | Nacht | Tag 1 | Nacht | Tag  | Nacht | Tag  | Nacht T | ag N | Nacht - | Tag  | Nacht | Tag      | Nacht    | Tag     | Nacht  | Tag     | Nacht  | Tag     | Nacht  | Tag    | Nacht   | Tag    | Nacht   | Tag     | Nacht  | Tag Nacht     |
| Pkw - Fahrt                          |    | !07!Pkw_F   | 4.9  |       | 2.8  |       | -3.5  |       | -8.0 |       | -9.0 |         | 0.5  |         | -4.8 |       | -9.7     |          | -6.5    |        | 3.4     |        | 9.7     |        | 22.9   |         | 25.8   |         | 19.7    |        | 27.9          |
| Lkw - Fahrt                          |    | !07!Lkw_F   | 20.1 |       | 22.7 |       | 24.0  |       | 23.5 |       | 15.9 | 1       | 3.2  |         | 31.1 |       | 13.9     |          | 17.7    |        | 16.8    |        | 20.9    |        | 40.1   |         | 37.0   |         | 30.9    |        | 43.0          |
| Pkw - Stellplätze (6)                |    | !07!Pkw_Stp | 12.1 |       | 10.8 |       | 5.4   |       | 5.2  |       | 2.6  |         | -0.1 |         | 8.8  |       | -2.1     |          | 0.8     |        | 2.6     |        | 5.8     |        | 33.9   |         | 28.6   |         | 22.8    |        | 35.1          |
| Lkw - Einzelereignisse/Rangieren     |    | !07!Lkw_ER  | 26.3 |       | 29.2 |       | 30.0  |       | 30.2 |       | 27.8 |         | 23.2 |         | 39.1 |       | 15.3     |          | 18.0    |        | 15.6    |        | 16.2    |        | 21.8   |         | 16.4   |         | 11.6    |        | 19.9          |
| Staplerverkehr (Be-/Entladung Lkw)   |    | !07!Stapler | 44.9 |       | 48.5 |       | 50.4  |       | 49.9 |       | 47.1 |         | 4.2  |         | 59.4 |       | 42.2     |          | 39.7    |        | 38.0    |        | 35.5    |        | 55.4   |         | 42.1   |         | 31.8    |        | 47.9          |
| Lager Ost - Öffnung                  |    | !07!VQ01    | 20.9 |       | 25.2 |       | 38.5  |       | 38.3 |       | 36.9 |         | 34.9 |         | 48.5 |       | 35.1     |          | 26.4    |        | 23.9    |        | 24.0    |        | 16.9   |         | 17.9   |         | 9.6     |        | 15.5          |
| Lager Ost - Tor 01                   |    | !07!VQ02    | 11.1 |       | 15.1 |       | 30.9  |       | 30.8 |       | 29.6 | 2       | 7.9  |         | 40.0 |       | 26.6     |          | 18.9    |        | 18.6    |        | 15.8    |        | 11.1   |         | 11.4   |         | 3.2     |        | 9.7           |
| Lager Ost - Tor 02                   |    | !07!VQ03    | 9.5  |       | 13.3 |       | 30.2  |       | 30.1 |       | 29.1 | 2       | 7.6  |         | 38.5 |       | 17.1     |          | 19.0    |        | 18.9    |        | 14.4    |        | 12.0   |         | 11.2   |         | 3.5     |        | 10.6          |
| Lager Ost - Tor 03                   |    | !07!VQ04    | 8.3  |       | 11.9 |       | 29.5  |       | 29.5 |       | 28.6 |         | 25.0 |         | 37.1 |       | 15.9     |          | 19.1    |        | 19.3    |        | 13.1    |        | 13.1   |         | 10.9   |         | 3.9     |        | 11.7          |
| Lager West - Öffnung                 |    | !07!VQ05    | 33.4 |       | 34.8 |       | 35.7  |       | 23.6 |       | 18.6 |         | 6.4  |         | 44.8 |       | 17.1     |          | 21.9    |        | 17.1    |        | 15.5    |        | 34.3   |         | 19.1   |         | 20.0    |        | 22.0          |
| Werkstatt Nord - Fenster West        |    | !07!VQ06    | 20.1 |       | 21.9 |       | 32.6  |       | 45.3 |       | 45.7 | 4       | 3.9  |         | 30.3 |       | 40.5     |          | 53.8    |        | 51.7    |        | 49.5    |        | 26.1   |         | 23.0   |         | 22.1    |        | 27.7          |
| Werkstatt Nord - Fenster/Tor/Tür Ost |    | !07!VQ07    | 38.7 |       | 44.2 |       | 44.7  |       | 29.6 |       | 24.8 | 2       | 2.9  |         | 51.0 |       | 24.5     |          | 30.3    |        | 27.7    |        | 25.5    |        | 50.1   |         | 29.0   |         | 27.1    |        | 35.3          |
| Werkstatt Süd - Fenster West         |    | !07!VQ08    | 17.7 |       | 18.9 |       | 26.0  |       | 42.6 |       | 43.1 |         | 9.1  |         | 25.2 |       | 36.2     |          | 50.9    |        | 55.4    |        | 55.1    |        | 26.2   |         | 27.0   |         | 25.8    |        | 29.6          |
| Werkstatt Süd - Tor Nord             |    | !07!VQ09    | 33.1 |       | 37.5 |       | 42.2  |       | 35.3 |       | 33.1 |         | 31.3 |         | 47.5 |       | 33.4     |          | 39.9    |        | 31.3    |        | 28.5    |        | 31.8   |         | 24.9   |         | 27.2    |        | 32.3          |
| MI1                                  | ~  | !06!MI1     |      |       |      |       |       |       |      |       |      |         |      |         |      |       |          |          |         |        |         |        |         |        |        |         |        |         |         |        |               |
| MI2                                  | ~  | !06!MI2     |      |       |      |       |       |       |      |       |      |         |      |         |      |       |          |          |         |        |         |        |         |        |        |         |        |         |         |        |               |
| MI3                                  | ~  | !06!MI3     |      |       |      |       |       |       |      |       |      |         |      |         |      |       |          |          |         |        |         |        |         |        |        |         |        |         |         |        |               |
| MI4                                  | ~  | !06!MI4     |      |       |      |       |       |       |      |       |      |         |      |         |      |       |          |          |         |        |         |        |         |        |        |         |        |         |         |        |               |

# Kontingentierung


| Quelle                               |     |            |      |       |      |       |      |       |      |       |      |       |      |       |      |       | Te      | eilpegel |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
|--------------------------------------|-----|------------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|---------|----------|---------|--------|---------|--------|---------|--------|---------|---------|--------|---------|---------|---------|---------|--------|
| Bezeichnung                          | M.  | ID         | Ю    | 01    | IO   | 02    | IO ( | 03    | IO   | 04    | IO   | 05    | IO   | 06    | IO   | 07    | IO Best | and 01   | IO Best | and 02 | IO Best | and 03 | IO Best | and 04 | IO Best | tand 05 | IO Bes | tand 06 | IO Best | tand 07 | IO Best | and 08 |
|                                      |     |            | Tag  | Nacht | Tag     | Nacht    | Tag     | Nacht  | Tag     | Nacht  | Tag     | Nacht  | Tag     | Nacht   | Tag    | Nacht   | Tag     | Nacht   | Tag     | Nacht  |
| Pkw - Fahrt                          | ~ ! | 07!Pkw_F   |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lkw - Fahrt                          | ~ ! | 07!Lkw_F   |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Pkw - Stellplätze (6)                | ~ ! | 07!Pkw_Stp |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lkw - Einzelereignisse/Rangieren     | ~ ! | 07!Lkw_ER  |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Staplerverkehr (Be-/Entladung Lkw)   | ~ ! | 07!Stapler |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lager Ost - Öffnung                  | ~ ! | 07!VQ01    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lager Ost - Tor 01                   | ~ ! | 07!VQ02    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lager Ost - Tor 02                   | ~ ! | 07!VQ03    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lager Ost - Tor 03                   | ~ ! | 07!VQ04    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Lager West - Öffnung                 | ~ ! | 07!VQ05    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Werkstatt Nord - Fenster West        | ~ ! | 07!VQ06    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Werkstatt Nord - Fenster/Tor/Tür Ost | ~ ! | 07!VQ07    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         | J       |        |
| Werkstatt Süd - Fenster West         | ~ ! | 07!VQ08    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| Werkstatt Süd - Tor Nord             | ~ ! | 07!VQ09    |      |       |      |       |      |       |      |       |      |       |      |       |      |       |         |          |         |        |         |        |         |        |         |         |        |         |         |         |         |        |
| MI1                                  | !   | 06!MI1     | 47.0 | 32.0  | 48.5 | 33.5  | 46.9 | 31.9  | 46.8 | 31.8  | 45.8 | 30.8  | 43.6 | 28.6  | 56.3 | 41.3  | 43.4    | 28.4     | 45.2    | 30.2   | 40.0    | 25.0   | 38.8    | 23.8   | 42.0    | 27.0    | 39.0   | 24.0    | 37.8    | 22.8    | 41.6    | 26.6   |
| MI2                                  | !   | 06!MI2     | 46.4 | 31.4  | 48.5 | 33.5  | 39.8 | 24.8  | 36.6 | 21.6  | 32.9 | 17.9  | 30.4 | 15.4  | 37.1 | 22.1  | 29.1    | 14.1     | 29.8    | 14.8   | 27.3    | 12.3   | 26.6    | 11.6   | 30.4    | 15.4    | 27.6   | 12.6    | 26.4    | 11.4    | 29.6    | 14.6   |
| MI3                                  | !   | 06!MI3     | 40.2 | 25.2  | 43.3 | 28.3  | 47.5 | 32.5  | 48.2 | 33.2  | 47.4 | 32.4  | 43.2 | 28.2  | 47.7 | 32.7  | 40.9    | 25.9     | 40.4    | 25.4   | 35.5    | 20.5   | 34.3    | 19.3   | 36.2    | 21.2    | 33.8   | 18.8    | 32.9    | 17.9    | 36.1    | 21.1   |
| MI4                                  | !   | 06!MI4     | 39.7 | 24.7  | 41.1 | 26.1  | 43.7 | 28.7  | 45.8 | 30.8  | 50.0 | 35.0  | 52.4 | 37.4  | 46.4 | 31.4  | 55.8    | 40.8     | 51.0    | 36.0   | 42.9    | 27.9   | 40.7    | 25.7   | 40.0    | 25.0    | 38.4   | 23.4    | 38.1    | 23.1    | 40.7    | 25.7   |

246314\_02\_B.docx



# Anlage 3 Lageplan

246314\_02\_B.docx Anlage 3







# Anlage 4 Berechnungskonfiguration

| Berechnungskon                        | figuration                   |
|---------------------------------------|------------------------------|
| Parameter                             | Wert                         |
| Allgemein                             |                              |
| Max. Fehler (dB)                      | 0.00                         |
| Max. Suchradius (m)                   | 5000.00                      |
| Mindestabst. Qu-Imm                   | 0.00                         |
| Aufteilung                            |                              |
| Rasterfaktor                          | 0.50                         |
| Max. Abschnittslänge (m)              | 5000.00                      |
| Min. Abschnittslänge (m)              | 1.00                         |
| Min. Abschnittslänge (%)              | 0.00                         |
| Proj. Linienquellen                   | An                           |
| Proj. Flächenquellen                  | An                           |
| Bezugszeit                            |                              |
| Zuschlag Tag (dB)                     | 0.00                         |
| Zuschlag Ruhezeit (dB)                | 6.00                         |
| Zuschlag Nacht (dB)                   | 0.00                         |
| Zuschlag Ruhezeit nur für             | Kurgebiet                    |
|                                       | reines Wohngebiet            |
|                                       | allg. Wohngebiet             |
| DGM                                   |                              |
| Standardhöhe (m)                      | 0.00                         |
| Geländemodell                         | Triangulation                |
| Reflexion                             |                              |
| max. Reflexionsordnung                | 2                            |
| Reflektor-Suchradius um Qu            | 100.00                       |
| Reflektor-Suchradius um Imm           | 100.00                       |
| Max. Abstand Quelle - Immpkt          | 5000.00 5000.00              |
| Min. Abstand Immpkt - Reflektor       | 0.55 0.55                    |
| Min. Abstand Quelle - Reflektor       | 0.10                         |
| Industrie (ISO 9613 (1996))           |                              |
| Seitenbeugung                         | mehrere Obj                  |
| Hin. in FQ schirmen diese nicht ab    | An                           |
| Abschirmung                           | ohne Bodendämpf. über Schirm |
| 3                                     | Dz mit Begrenzung (20/25)    |
| Schirmberechnungskoeffizienten C1,2,3 | 3.0 20.0 0.0                 |
| Temperatur (°C)                       | 10                           |
| rel. Feuchte (%)                      | 70                           |
| Bodenabsorption G                     | 0.50                         |
| Windgeschw. für Kaminrw. (m/s)        | 3.0                          |
| Straße (RLS-19)                       |                              |
| Schiene (Schall 03 (2014))            |                              |
| Fluglärm (???)                        |                              |
| Halbierungsparameter                  | 3                            |
| SCC_INTEGR                            | nach UBA                     |
| Verwende Pegel Lk < 55dB              | Aus                          |
| Bezugszeitraum T (s)                  | 15552000                     |
| Dezugszeitraum i (s)                  | 10002000                     |

246314\_02\_B.docx Anlage 4