

Messsielle Hach 8290 billische

Schalltechnische Untersuchung

zur Aufstellung des Bebauungsplanes Nr. 94 mit der Bezeichnung "Niederroth – Richtung Kreut" im Markt Markt Indersdorf, im Landkreis Dachau

Auftraggeber: Mark Markt Indersdorf

über

WipflerPLAN Erschließungsträger- und

Projektsteuerungsgesellschaft mbH und Co. KG

Hohenwarter Straße 124 85276 Pfaffenhofen a.d. Ilm

Abteilung: Immissionsschutz

Auftragsnummer: 8669.1/2024-RK

Datum: 13.08.2025

Sachbearbeiter: Roman Knoll

Telefonnummer: 08254 / 99466-52

E-Mail: roman.knoll@ib-kottermair.de

Berichtsumfang: 73 Seiten

Inhaltsverzeichnis

1.	Zu	sammenfassung	4
	1.1.	Anforderungen / Empfehlungen für Satzung und Begründung	8
	1.2.	Textvorschläge zur Bebauungsplansatzung	10
	1.3.	Textvorschläge für die Begründung	12
2.	Au	fgabenstellung	16
3.	Au	sgangssituation und örtliche Gegebenheiten	16
	3.1.	Örtliche Gegebenheiten	16
	3.2.	Immissionsorte	19
4.	Qι	ıellen- und Grundlagenverzeichnis	20
5.	In	nmissionsschutzrechtliche Vorgaben	23
	5.1.	Allgemeine Anforderungen an den Schallschutz	23
	5.2.	Anforderungen an den Schallschutz nach DIN 18005:2023-07	23
	5.2.1.	Hinweise zu Außenwohnbereiche	
	5.3.	Grundsätzliche Aussagen zum Verkehrslärm (Allgemein)	25
	5.4.	Anforderungen nach DIN 45691:2006-12 (Geräuschkontingentierung)	
	5.4.1.	Hinweis zur Kontingentierung (allgemein)	28
	5.5.	Anforderungen nach TA Lärm	
	5.5.1.	TA Lärm - Vor- und Zusatzbelastung	
	5.5.2.	TA Lärm - Einwirkungsbereich nach Punkt 2.2 der TA Lärm	
	5.6.	Schallschutzmaßnahmen - Allgemein	
	5.7.	Anforderungen an den Schallschutz nach DIN 4109:2018-01	
	5.8.	Bauplanungsrechtliche Festsetzungen	
6.	Be	urteilung	37
	6.1.	Allgemeines	37
	6.1.1.	Berechnungssoftware	
	6.1.2.	Grundsätzliche Aussagen über die Mess- und Prognoseunsicherheit	
7.	Ve	rkehrslärm	39
	7.1.	Ausgangsdaten Verkehrslärm – Schiene/Bahn	39
	7.2.	Ausgangsdaten Verkehrslärm – Straße	40
8.	Ge	räuschkontingentierung	41
	8.1.	Festlegen der Gesamtimmissionsrichtwerte	41
	8.1.1.	Vorbelastung und folgende Planwerte	
	8.1.2.	Bestimmung der Emissionskontingente L _{EK}	
	8.1.3.	Zusatzkontingente für einzelne Richtungssektoren	43
q	Fir	wirkender Gewerhelärm innerhalb des Planungsgehietes	45

Anlagenverzeichnis

Anlage 1	Geländemodell und Übersicht zur Situation vor Ort	47
Anlage 1.1	Grafik "Digitales Geländemodell"	47
Anlage 1.2	INr. Zuordnungsnummern für Tabellendarstellungen der Anlagen	48
Anlage 2	Verkehrslärm gesamt, "Straße und Schiene/Bahn"	49
Anlage 2.1	Grafik GLK; Beurteilungspegel Tag, EG	49
Anlage 2.2	Grafik GLK; Beurteilungspegel Tag, 1.0G	50
Anlage 2.3	Grafik GLK, Beurteilungspegel Nacht, EG	
Anlage 2.4	Grafik GLK, Beurteilungspegel Nacht, 1.OG	
Anlage 2.5	Grafik RLK, WA-Gebiet, Verkehr gesamt, Tag u. Nacht, EG u. 1.OG	53
Anlage 2.6	Grafik RLK, MI-Gebiet, Verkehr gesamt, Tag u. Nacht, EG u. 1.OG	54
Anlage 2.7	Beurteilungspegel Einzelpunkte, Straße und Schiene	55
Anlage 2.8	Rechenlauf, Berechnung Straße und Schiene	57
Anlage 2.9	Eingabedaten / Ausgangsdaten Schiene	58
Anlage 2.10	Eingabedaten / Ausgangsdaten Straße	
Anlage 2.11	Verkehrslärm: Vergleich zum "ORW" und "IGW"	61
Anlage 3	Verkehrslärm nur Schiene	
Anlage 3.1	Beurteilungspegel Einzelpunkte, nur Schienenverkehr	62
Anlage 3.2	Rechenlauf, Berechnung nur Schienenverkehr	64
Anlage 4	Verkehrslärm nur Straße	
Anlage 4.1	Beurteilungspegel Einzelpunkte, nur Straßenverkehr	65
Anlage 4.2	Rechenlauf, nur Straßenverkehr	
Anlage 5	Kontingentberechnung zur Planung	
Anlage 5.1	Grafik zur Berechnung der Situation	
Anlage 5.2	Koordinaten der Teilflächen	
Anlage 6	Maßgebliche Außenlärmpegel nach DIN 4109:2018	
Anlage 6.1	Maßgebliche Außenlärmpegel (Höchster Pegelwert)	71
Anlage 6.2	Maßgebliche Außenlärmpegel (Tabellendarstellung)	72
Anlage 7	Mitgeltende Unterlagen	
Anlage 7.1	Grundlage zur Verkehrsregelung (Ortschild)	
Anlage 7.2	Grundlage zum möglichen Ergänzungsgebiet /27/	73

1. Zusammenfassung

Der Markt Indersdorf, im Landkreis Dachau, beabsichtigt die Aufstellung des Bebauungsplanes Nr. 94 mit der Bezeichnung "Niederroth – Richtung Kreut". Innerhalb des Bebauungsplanes ist die Ausweisung eines allgemeinen Wohngebiets (WA), eines Mischgebietes (MI) sowie eines Gewerbegebiets (GE) geplant.

Das Planungsgebiet liegt im schalltechnischen Einwirkungsbereich der Münchner Straße (St 2050), die östlich des Plangebietes in Nord-Süd-Richtung verläuft und der Bahnstrecke Dachau - Altomünster, die ebenfalls im Osten liegt und in Richtung Nord-Süd ausgerichtet ist.

Für die gewerblichen Flächen und die Mischgebietsflächen innerhalb des geplanten Bebauungsplanes erfolgt eine Lärmkontingentierung nach der DIN 45691:2006-12, Geräuschkontingentierung, vom Dezember 2006 (Bearbeitungsgrundlage /19/), so dass unter Berücksichtigung möglicher Vorbelastungen an den schützenswerten Bebauungen die zutreffenden Orientierungswerte der DIN 18005 /3/ eingehalten bzw. unterschritten werden können.

Für unser Ingenieurbüro, Messstelle nach § 29b BImSchG, besteht die Aufgabe, die schallschutztechnische Verträglichkeit der gesamten Planung nach den einschlägigen rechtlichen und technischen Regelwerken zu ermitteln und hinsichtlich der maßgeblichen Immissionsorte bzw. des Gesamtgebietes zu bewerten. Einschlägig in der Bauleitplanung ist die DIN 18005 /3/. Die Beurteilung der Geräusche durch den Verkehrslärm erfolgt somit nach /3/ in Verbindung mit der Verkehrslärmschutzverordnung (16. BImSchV /4/). Die Lärmkontingentierung ist wie beschrieben nach /19/ durchzuführen.

Die Untersuchung kommt hinsichtlich des Verkehrslärms zu folgendem Ergebnis:

Die Beurteilung der Geräusche durch den Straßen- und Schienenverkehr erfolgt nach der DIN 18005 /3/ in Verbindung mit der 16. BImSchV /4/. Innerhalb der Teilflächen WA 1, WA 2, MI 1 bis MI 5 sowie innerhalb der GE 2 Fläche wurden Beispielgebäude zur Berechnung des Verkehrslärms berücksichtigt, die zum Teil direkt an den jeweiligen Baugrenzen liegen. Die Ausgangsdaten für die Emittenten (Schiene und Straße) sind im Kapitel 7.1 bzw. 7.2 detailliert dargelegt.

Für den Verkehrslärm wurden im Beiblatt 1 der DIN 18005 /3/ Orientierungswerte (ORW) für allgemeine Wohngebiete (WA) 55/45 dB(A) Tag/Nacht festgelegt. Für Mischgebiete (MI) gelten ORW tagsüber/nachts von 60/50 dB(A) und für Gewerbegebiete (GE) sind tagsüber/nachts 65/50 dB(A) zulässig. Die Immissionsgrenzwerte (IGW) der 16. BIm-SchV /4/ liegen jeweils um 4 dB(A) über den Orientierungswerten der genannten Gebietsnutzungen.

Die Berechnungen haben gezeigt, dass die Orientierungswerte der DIN 18005, sowie die Immissionsgrenzwerte der 16. BImSchV zur Tages- und zur Nachtzeit innerhalb der Parzellen im Nahbereich der Münchner Straße (St 2050) überschritten werden.

<u>Ergebnisse in Bezug zu den WA-Parzellen</u>

Zur Tageszeit wird innerhalb der kritischeren Parzelle WA 2 der berücksichtigte ORW von 55 dB(A) um maximal 7 dB(A) überschritten. Der um 4 dB(A) höhere IGW wird folglich um 3 dB(A) überschritten. Zur Nachtzeit wird der ORW von 45 dB(A) um maximal 8 dB(A) überschritten und der um 4 dB(A) höhere IGW folglich um 4 dB(A).

Ergebnisse in Bezug zu den MI-Parzellen

Zur Tageszeit wird innerhalb der kritischeren Parzelle MI 3 der berücksichtigte ORW von 60 dB(A) um maximal 5 dB(A) überschritten. Der um 4 dB(A) höhere IGW wird folglich um 1 dB(A) überschritten. Zur Nachtzeit wird der ORW von 50 dB(A) um maximal 6 dB(A) überschritten und der um 4 dB(A) höhere IGW folglich um 2 dB(A).

Ergebnisse in Bezug zu den GE-Parzellen

• Innerhalb der Gewerbegebietsflächen liegen keinerlei Konflikte vor.

Die sich ergebenden Beurteilungspegel an sämtlichen Fassadenseiten und Stockwerken der Beispielgebäude sind in der Anlage 2.1 bis Anlage 2.4 (Summe Bahn und Schiene) aufgeführt. Über die Farbskala ist dabei der entsprechende Konflikt zu den Orientierungswerten bzw. zu den Immissionsgrenzwerten ersichtlich. In der Anlage 3 ist tabellarisch das Ergebnis alleine durch den Schienenverkehrslärm und in der Anlage 4 alleine durch den Straßenverkehrslärm aufgeführt.

Zusätzlich werden die Ergebnisse der Verkehrslärmberechnungen als Rasterlärmkarten in zwei Höhen für die Tages- und Nachtzeit dargestellt: zum einen für das Erdgeschoss in 2,8 Meter über Gelände, zum anderen für das erste Obergeschoss in 5,6 Meter über Gelände. Diese Lärmkarten dienen als Grundlage für die textlichen Festsetzungen "Verkehrslärm" im Bebauungsplan, sodass sich diese nicht auf die beispielhaften Bebauungen beziehen müssen.

Die Darstellung der Rasterlärmkarten konzentriert sich auf jene Parzellen, die unmittelbar an die Straße angrenzen und als allgemeines Wohngebiet (WA) oder Mischgebiet (MI) ausgewiesen sind. Diese Auswahl basiert auf den Ergebnissen der entsprechenden Berechnungen der Gebäudelärmkarten.

Die zugehörigen Rasterlärmkarten sind in der Anlage 2.5 (für das allgemeine Wohngebiet, WA) und in der Anlage 2.6 (für das Mischgebiet, MI) enthalten. Beide Anlagen zeigen die Lärmbelastung jeweils getrennt nach Tages- und Nachtzeit sowie unter Berücksichtigung der genannten Geschosshöhen.

Allgemein gilt: Aktive, bauliche und/oder passive Schallschutzmaßnahmen sind zum Schutz der geplanten Nutzungen vor Verkehrslärm in Bereichen mit einer Überschreitung der Orientierungswerte des Beiblatts 1 der DIN 18005:2023-07 zu empfehlen, in Bereichen mit einer Überschreitung der Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV) sind diese zwingend erforderlich.

Zum aktiven Schallschutz:

Gemäß den Vorgaben /31/ ist auch eine aktive Schallschutzmaßnahme zu prüfen. Hinsichtlich der städtebaulichen Gesichtspunkte und der Zufahrt oder Abfahrt aus dem Baugebiet sowie den notwendigen Überstandslängen ist eine aktive Schallschutzeinrichtung auch nach Rücksprache mit dem Planungsbüro /28/ nicht einzurechnen. Auf eine Prüfung hierzu wird diesbezüglich verzichtet.

In diesem Fall sind bauliche Schallschutzmaßnahmen wie Grundrissorientierungen (schutzbedürftige Räume nach DIN 4109:2018 zur lärmabgewandten Seite) in Verbindung mit entsprechenden passiven Schallschutzmaßnahmen (z. B. Schallschutzfenster, verglaste Balkone, Wintergärten), sowie entsprechenden Belüftungsmöglichkeiten (kontrollierte Wohnraumlüftung) vorzusehen.

Die Untersuchung kommt hinsichtlich der "Kontingentierung" zu folgendem Ergebnis: Entsprechend dem Formalismus der DIN 45691:2006-12 "Geräuschkontingentierung" /19/ können unter Beachtung der Vorbelastungen und ausschließlicher Anwendung der geometrischen Ausbreitungsdämpfung für die gewerblichen Flächen, die in der Tabelle 1 aufgeführten Emissionskontingente ermittelt werden. Die Vergabe von möglichen Zusatzkontingenten wurde berücksichtigt.

Tabelle 1: Emissionskontingent (LEK) tags und nachts in dB(A)

Kontingentfläche		Emissionskontingent L _{EK}	
Teilfläche	Fläche [m ²]	Tag (06-22 Uhr)	Nacht (22-06 Uhr)
TF-GE 1	2.142,9	58	43
TF-GE 2	3.126,8	58	43
TF-GE 3	3.422,7	64	50
TF-GE 4	1.331,0	59	44
TF-MI 1	2.421,7	50	30
TF-MI 2	1.630,4	50	30
TF-MI 3	1.549,3	55	40
TF-MI 4	1.048,9	57	42
TF-MI 5	1.573,4	60	45
TF-MI 6	1.962,2	61	46

In der Grafik in Anlage 5.1 TF GE 3.1 und TF GE3.2 sowie TF MI 5.1 und TF MI 5.2; Lek im MI schlecht lesbar

Die Eingabedaten und Ergebnisse der ermittelten Emissionskontingente für die gewerblichen Flächen des Bebauungsplanes mit der Bezeichnung "Niederroth – Richtung Kreut" sind im Kapitel 8.1.2 beschrieben. In der Anlage 5 ist die Situation grafisch dargestellt.

Einwirkender Gewerbelärm innerhalb des Planungsgebietes

Für die Parzellen innerhalb des Plangebietes wurde eine ergänzende Berechnung durchgeführt. Dabei wurden die gewerblichen Flächen (GE-Flächen) unter Berücksichtigung ihrer jeweiligen Emissionskontingente angesetzt, um den daraus resultierenden Lärmeintrag auf die angrenzenden Mischgebiets- sowie allgemeinen Wohngebietsflächen zu ermitteln.

Wie in Kapitel 9 dargestellt, ergeben sich innerhalb dieser angrenzenden Nutzungsbereiche keine Konfliktsituationen im Hinblick auf die zulässigen Immissionsrichtwerte gemäß TA Lärm bzw. den Orientierungswerten der DIN 18005.

Maßgebliche Außenlärmpegel:

Zur Orientierung wurden für den baulichen Schallschutznachweis gemäß BauVorlV für die einzelnen Geschosse der Beispielbebauungen die maßgeblichen Außenlärmpegel nach DIN 4109:2018-01 berechnet (s. Anlage 6). Die tatsächlich relevanten Außenlärmpegel sind jedoch im Rahmen des Baugenehmigungsverfahrens bzw. des Genehmigungsfreistellungsverfahrens durch eine schalltechnische Untersuchung zu bestimmen. Dabei ist die konkrete Lage und Höhe des geplanten Baukörpers innerhalb der festgesetzten Baugrenzen zu berücksichtigen, sodass die maßgeblichen Außenlärmpegel gegebenenfalls an die Eingabeplanung angepasst werden müssen.

Die maßgeblichen Außenlärmpegel ergeben sich aus dem berechneten Verkehrslärm von Straße und Schiene sowie aus einem pauschalen Ansatz für den Gewerbelärm. Für Letzteren werden die zulässigen Immissionsrichtwerte gemäß TA Lärm /7/ bzw. die Orientierungswerte der DIN 18005 /3/ herangezogen.

Die Anforderungen an die gesamten bewerteten Bau-Schalldämm-Maße R_{w,ges} der Außenbauteile von schutzbedürftigen Räumen wurde nach DIN 4109-1:2018-01 "Schallschutz im Hochbau" /15/ über den maßgeblichen Außenlärmpegel abgeleitet.

Gemäß den BayTB (Bayerische Technische Baubestimmungen), Anlage A Teil 5.2/1 ist ein Nachweis der Luftschalldämmung von Außenbauteilen ist erforderlich, wenn

- a) der Bebauungsplan festsetzt, dass Vorkehrungen zum Schutz vor Außenlärm am Gebäude zu treffen sind (§ 9 Abs. 1 Nr. 24 BauGB) oder
- b) der "maßgebliche Außenlärmpegel" (Abschnitt 4.4.5 der DIN 4109-2:2018-01) (..) gleich oder höher ist als

- 61 dB(A) bei Aufenthaltsräumen in Wohnungen, Übernachtungsräumen, Unterrichtsräumen und ähnlichen Räumen sowie bei Bettenräumen in Krankenhäusern und Sanatorien
- 66 dB(A) bei Büroräumen

1.1. Anforderungen / Empfehlungen für Satzung und Begründung

Bei der Aufstellung von Bebauungsplänen sind die allgemeinen Anforderungen an gesunde Wohn- und Arbeitsverhältnisse und die Belange des Umweltschutzes zu berücksichtigen. Schädliche Umwelteinwirkungen sollen bei der Planung nach Möglichkeit vermieden werden. In der Satzung zum Bebauungsplan sind Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen in Form von abstrakten und konkreten Festsetzungen nach § 9 Abs. 1 Nr. 1 BauGB i.V.m. § 1 Abs. 4 Nr. 2 und Abs. 9 BauNVO bzw. § 9 Abs. 1 Nr. 24 BauGB zu treffen. Nachfolgend sind für den Bebauungsplan Empfehlungen aufgezeigt, die nach Abwägung in die Satzung bzw. Begründung des Bebauungsplanes übernommen werden können.

Hinweise für den Planzeichner:

- Die L_{EK} Werte sind in die betreffende Fläche im Bebauungsplan einzutragen bzw. im Satzungstext zu beschreiben. Der Eintrag lautet z.B. für die Teilfläche TF-GE1: Emissionskontingent: Tag / Nacht: $L_{EK,T} = 58 \text{ dB(A)/m}^2 / L_{EK,N} = 43 \text{ dB(A)/m}^2$.
- Weiterhin ist die zugehörige Kontingentfläche eindeutig kenntlich zu machen (Bezugsflächen gemäß beiliegender Planzeichnung in Anlage 5 bzw. Koordinatenfestlegung im UTM-32-System nach Anlage 5.2).
- Richtungssektoren und Bezugspunkte sind im Bebauungsplan darzustellen und im Satzungstext zu beschreiben.
- Änderungen der gewerblichen Nutzfläche (insb. Vergrößerung, Heranrücken an IO) bedürfen einer erneuten schalltechnischen Beurteilung.
- Die Immissionsgrenzwertlinien der 16. BImSchV bzw. die Bereiche mit Überschreitungen der 16. BImSchV durch Verkehrslärm, an denen bauliche- und/ oder passive Schallschutzmaßnahmen erforderlich sind, sind im Plan mit Planzeichen für Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen hervorzuheben.
- Die Verweise auf die Legende sind in eigener Zuständigkeit anzupassen.

Hinweise für den Markt Markt Indersdorf

 Die Textvorschläge für die Satzung und Begründung sind unter der Vorgabe erstellt, dass der Markt Markt Indersdorf die Verkehrslärmsituation bis zu den jeweiligen Immissionsgrenzwerten der 16. BImSchV für die entsprechenden Gebietsnutzungen abwägt. Weiter, dass eine aktive Schallschutzmaßnahme (Vollschutz aller Geschosse) im vorliegenden Fall auf Grund der örtlichen Gegebenheiten (z.B. ungünstige Höhenentwicklung, ansteigendes Gelände der Straße zum Baugebiet, eingeschränktes Sichtdreieck bei der Zufahrt oder Abfahrt aus dem Baugebiet und der notwendigen Überstandslängen) nicht zielführend sind und deshalb hier nicht weiterverfolgt werden. Eine entsprechende Abwägung ist durchzuführen.

- Die Anforderungen des Rechtsstaatsprinzips an die Verkündung von Normen stehen einer Verweisung auf nicht öffentlich zugängliche DIN-Vorschriften in den textlichen Festsetzungen eines Bebauungsplanes nicht von vornherein entgegen (BVerwG, Beschluss vom 29.Juli 2010-4BN 21.10- Buchholz 406.11 §10 BauGB Nr. 46 Rn 9ff.). Verweist eine Festsetzung aber auf eine solche Vorschrift und ergibt sich erst aus dieser Vorschrift, unter welchen Voraussetzungen ein Vorhaben planungsrechtlich zulässig ist, muss der Plangeber sicherstellen, dass die Planbetroffenen sich auch vom Inhalt der DIN-Vorschrift verlässlich und in zumutbarer Weise Kenntnis verschaffen können. Den rechtstaatlichen Anforderungen genügt die Stadt, wenn sie die in Bezug genommene DIN-Vorschrift bei der Verwaltungsstelle, bei der auch der Bebauungsplan eingesehen werden kann, zur Einsicht bereithält und hierauf in der Bebauungsplanurkunde hinweist (BVerwG, Beschluss vom 29.Juli 2010- 4BN21.10- a.a.O. Rn 13).
- Aufgrund der räumlichen Gegebenheiten insbesondere der geringen Abstände zwischen der bestehenden Wohnnutzung in der Nachbarschaft und der geplanten gewerblichen Nutzung – sowie der bereits vorhandenen gewerblichen Vorbelastung, ist eine uneingeschränkte gewerbliche Nutzung im Plangebiet nicht möglich. Dies gilt insbesondere vor dem Hintergrund, dass bei Ansatz typischer flächenbezogener Schallleistungspegel die Orientierungswerte gemäß DIN 18005 deutlich überschritten werden. Nach dieser Norm gelten Gewerbegebiete (GE) nur dann als uneingeschränkt nutzbar, wenn die immissionswirksamen, flächenbezogenen Schallleistungspegel tagsüber und nachts jeweils maximal 60 dB(A)/m² betragen. Da eine solche Fläche innerhalb des Plangebietes nicht realisierbar ist, ist eine gebietsübergreifende, sog. "externe" Gliederung zulässig, sofern dies in geeigneter Weise im Bebauungsplan selbst oder seiner Begründung dokumentiert wird. Falls ein solches Ergänzungsgebiet für die "externe" Gliederung in der Kommune nicht vorhanden und auch eine "interne" Gliederung nicht möglich ist, so muss das Gebiet als eingeschränktes Gewerbegebiet (GEe) mit detailliert genannten, zulässigen Nutzungen festgesetzt werden. Im vorliegenden Fall ist nach Angaben vom Markt Markt Indersdorf eine "externe" Gliederung durch den rechtskräftigen Bebauungsplan Nr. 19/II "Industrie- und Gewerbegebiet Karpfhofen" sichergestellt.
- Die Aufteilung und genaue Bezeichnung der Flächen sowie deren Emissionskontingente LEK (Kontingentierung) sowie Zusatzkontingente sind, entsprechend dieser schalltechnischen Untersuchung in den Bebauungsplan zu übernehmen. Bei einer Änderung von Flächen im weiteren Bebauungsplanverfahren muss die Kontingentierung überarbeitet werden, da bei Abweichungen das Gesamtkonzept nicht mehr schlüssig ist.

1.2. Textvorschläge zur Bebauungsplansatzung

Zur Geräuschkontingentierung

• Zulässig sind Vorhaben (Betriebe und Anlagen), deren Geräusche die in der folgenden Tabelle dargestellten "Emissionskontingente L_{EK} nach DIN 45691 weder tags (06.00 Uhr bis 22.00 Uhr) noch nachts (22.00 Uhr bis 06.00 Uhr) überschreiten:

Kontingentfläche Teilfläche Fläche [m²]		Emissionskontingent L _{EK}		
		Tag (06-22 Uhr)	Nacht (22-06 Uhr)	
TF-GE 1	2.142,9	58	43	
TF-GE 2	3.126,8	58	43	
TF-GE 3	3.422,7	64	50	
TF-GE 4	1.331,0	59	44	
TF-MI 1	2.421,7	50	30	
TF-MI 2	1.630,4	50	30	
TF-MI 3	1.549,3	55	40	
TF-MI 4	1.048,9	57	42	
TF-MI 5	1.573,4	60	45	
TF-MI 6	1.962,2	61	46	

• Für die im Plan dargestellten Richtungssektoren A bis E erhöhen sich die Emissionskontingente L_{EK} um folgende Zusatzkontingente:

Zusatzkontingente für die Richtungssektoren in dB(A)

Richtungssektoren mit Winkel			Zusatzkontingent	
zum Bezugspunkt (im Uhrzeigersinn, Norden = 0°)		Tag (6-22 Uhr)	Nacht (22-6 Uhr)	
Α	298,0	324,0	5	5
В	324,0	348,0	0	0
С	348,0	13,0	0	0
D	13,0	62,0	5	5
Е	62,0	232,0	7	7

- Der Bezugspunkt BP_{zus} für die Richtungssektoren hat folgende UTM 32 Koordinaten: X = 676862,00 / Y = 5354344,00
- Die Prüfung der planungsrechtlichen Zulässigkeit des Vorhabens erfolgt nach DIN 45691:2006-12, Abschnitt 5, wobei in den Gleichungen (6) und (7) für Immissionsorte j im Richtungssektor k L_{EK,i} durch L_{EK,i} + L_{EK,zus,j} zu ersetzen ist.
- Die Relevanzgrenze der Regelung in Abschnitt 5 Abs. 5 der DIN 45691:2006-12 ist anzuwenden; sie wird nicht ausgeschlossen.

- Erstreckt sich die Betriebsfläche eines Vorhabens über mehrere Teilflächen, so ist dieses Vorhaben dann zulässig, wenn der sich ergebende Beurteilungspegel nicht größer ist als die Summe der sich aus den Emissionskontingenten ergebenden Immissionskontingente. Die Regelung zur Summation gemäß Abschnitt 5 DIN 45691:2006-12 findet Anwendung; sie wird nicht ausgeschlossen.
- Die Kommune macht bei dieser Festsetzung von der Möglichkeit des § 1 Abs. 4 Satz
 2 BauNVO Gebrauch und verzichtet deshalb auf die Festsetzung eines Teilgebietes des Bebauungsplanes ohne Emissionskontingente
- Ein nicht kontingentiertes bzw. einschränkendes Ergänzungsgebiet gemäß § 1 Abs. 4 Satz 2 BauNVO ist das im rechtskräftigen Bebauungsplan Nr. 19/II "Industrie- und Gewerbegebiet Karpfhofen" vom 20.11.1984 festgesetzte Gewerbegebiet.
- Die Notwendigkeit zur Vorlage einer schalltechnischen Untersuchung ist mit den zuständigen Behörden abzustimmen (siehe Hinweise zum Bebauungsplan).

Wohnungen innerhalb der gewerblichen Teilflächen (GE-Flächen):

Die nach § 8 Abs. 3 Nr. 1 BauNVO ausnahmsweise zulässigen Wohnungen für Aufsichtsund Bereitschaftspersonen sowie für Betriebsinhaber und Betriebsleiter, die dem Gewerbebetrieb zugeordnet und ihm gegenüber in Grundfläche und Baumasse untergeordnet sind, werden innerhalb der gewerblichen Teilflächen ausgeschlossen.

Zum Verkehrslärm

Planzeichen für Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen

- Schutzbedürftige Aufenthaltsräume im Sinne der DIN 4109-1:2018-01 ("Schallschutz im Hochbau Teil 1: Mindestanforderungen"), insbesondere Wohnräume, Wohndielen, Wohnküchen, Schlafräume, Kinderzimmer und Büroräume, sind in Gebäuden innerhalb der Parzellen WA 2, MI 3 und MI 6, die zur Staatsstraße St 2050 orientiert sind und in Bereichen liegen, in denen nach schalltechnischer Untersuchung eine Überschreitung der Immissionsgrenzwerte gemäß der 16. BImSchV vorliegt oder für die in der Planzeichnung das Planzeichen "Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen" festgesetzt wurde, möglichst so anzuordnen, dass ihre Fenster zur Belüftung an Außenfassaden liegen, an denen die Einhaltung der Immissionsgrenzwerte der 16. BImSchV dauerhaft gewährleistet ist (Grundrissorientierung).
- Soweit eine Grundrissorientierung nicht für alle schutzbedürftigen Räume möglich ist, sind bauliche und/oder passive Schallschutzmaßnahmen vorzusehen. Dabei müssen alle Außenfassaden des Gebäudes ein gesamtes bewertetes Bau-Schalldämm-Maß

R'w,ges i.S.v. Ziff. 7.1 der DIN 4109-1:2018-01 aufweisen, das sich für die unterschiedlichen Raumarten ergibt. Fensterflächen, die im Bereich mit Überschreitungen der Immissionsgrenzwerte der 16. BImSchV liegen oder für die das Planzeichen "Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen" festgesetzt wurde, sind mit schallgedämmten Belüftungseinrichtungen nach DIN 1946-6:2019-12 ("Raumlufttechnik") auszustatten, die sicherstellen, dass auch im geschlossenen Zustand die erforderlichen Außenluftvolumenströme nach DIN 1946-6:2019-12 ("Raumlufttechnik") eingehalten werden (kontrollierte Wohnraumlüftung). Alternativ ist auch der Einbau anderer Schallschutzmaßnahmen (z.B. nicht zum dauerhaften Aufenthalt genutzte Wintergärten, verglaste Vorbauten und Balkone, Laubengänge, Schiebeläden etc.) zulässig.

Baulicher Schallschutz nach DIN 4109 "Schallschutz im Hochbau":

• An Fassaden mit einem maßgeblichen Außenlärmpegel ≥ 61 dB(A) bei Aufenthaltsräumen in Wohnungen bzw. ≥ 66 dB(A) bei Büroräumen ist nach der BayTB, Anlage A Teil 5.2/1 in Verbindung mit der DIN 4109-1:2018-01 ein Nachweis der Luftschalldämmung der Außenbauteilen erforderlich. Die maßgeblichen Außenlärmpegel sind im Baugenehmigungsverfahren bzw. im Genehmigungsfreistellungsverfahren anhand der tatsächlichen Lage der Gebäude, im Zuge einer schalltechnischen Untersuchung, zu ermitteln, wobei die konkreten maßgeblichen Außenlärmpegel ggf. an die Eingabeplanung (konkrete Lage und Höhe des geplanten Baukörpers innerhalb der Baugrenzen) anzupassen sind.

1.3. Textvorschläge für die Begründung

- Nach § 1 Abs. 6 BauGB sind bei Aufstellung und Änderung von Bebauungsplänen insbesondere die Anforderungen an gesunde Wohn- und Arbeitsverhältnisse zu berücksichtigen.
- Für den Bebauungsplan wurde die schalltechnische Untersuchung 8669.1/2024-RK der Ingenieurbüro Kottermair GmbH, Altomünster, vom 13.08.2025 angefertigt, um für den gewerblichen Teil des Plangebietes die an der schützenswerten Nachbarschaft zulässigen Lärmimmissionen zu quantifizieren und beurteilen zu können, ob die Anforderungen des § 50 BImSchG für die schützenswerte Bebauung hinsichtlich des Schallschutzes erfüllt sind. Die Definition der schützenswerten Bebauung richtet sich nach der Konkretisierung im Beiblatt 1 zur DIN 18005 "Schallschutz im Städtebau".
- Unter Berücksichtigung des Urteils 4 BN 45.18 des BVerG vom 07.03.2019 (hier für GE-Gebiet) wäre eine gebietsübergreifende Gliederung des Bebauungsplanes

erforderlich, da wegen der bestehenden Wohnbebauung in unmittelbarer Nachbarschaft eine uneingeschränkte Kontingentfläche im Plangebiet selbst nicht realisierbar war (GE- Gebiete gelten nach DIN 18005 erst als uneingeschränkt bei immissionswirksamen, flächenbezogenen Schallleistungspegeln von tagsüber / nachts jeweils 60 dB(A) / m²). Voraussetzung für eine gebietsübergreifende Gliederung nach § 1 Abs. 4, Satz 1 Nr. 2 oder Satz 2 BauNVO ist, dass im Gemeindegebiet noch mindestens ein Gewerbegebiet vorhanden ist, in dem keine Emissionsbeschränkungen gelten oder ein Teilgebiet mit Emissionskontingenten o.ä. besteht, die jegliche nach § 8 BauNVO gewerbliche Nutzung (Tag und Nacht) ermöglicht. Dies ist in vorliegenden Fall nach Angaben vom Markt Markt Indersdorf durch den rechtskräftigen Bebauungsplan Nr. 19/II "Industrie- und Gewerbegebiet Karpfhofen" (*Rechtskraft xx.xx.xxxxx*) sichergestellt.

- Der Gliederung des Gebiets liegt folgende städtebauliche Konzeption zugrunde: Die Kommune möchte mit der vorliegenden Planung nahe den schutzbedürftigen Nutzungen Ansiedlungen mit geringerem Flächenanspruch und in aller Regel weniger kritischem Emissionsverhalten realisieren, während immissionsschutzrechtlich vermehrt kritischere Nutzungen im abgerückten Bereich vorgesehen sind. Bei Bauvorhaben auf den Bebauungsplanflächen sollten grundsätzlich bereits im Planungsstadium schallschutztechnische Belange berücksichtigt werden. Insbesondere sollten die Möglichkeiten des baulichen Schallschutzes durch eine optimierte Anordnung der Baukörper, der technischen Schallquellen an den Baukörpern und der Schallquellen im Freien genutzt werden. Durch Abschirmung von Schallquellen durch Gebäude und/oder aktive Schallschutzmaßnahmen ist eine erhöhte Geräuschemission möglich.
- Die Mischgebietsflächen MI 1 bis MI 6 werden zur Sicherstellung einer städtebaulich verträglichen Nutzung in zwei funktionale Teilbereiche gegliedert. Die Teilflächen MI 1 bis MI 4 bilden einen emissionsbeschränkten Bereich, in dem ausschließlich gewerbliche Nutzungen gemäß § 6 BauNVO zulässig sind, die nach Art und Umfang geringe Emissionen verursachen und das Wohnen nicht wesentlich stören. Dazu zählen insbesondere ruhige Nutzungen wie Büros, Praxen oder kleinere Einzelhandelsbetriebe mit geringer Kundenfrequenz. In den Teilflächen MI 5 und MI 6 sind hingegen auch gewerbliche Nutzungen zulässig, die mit höheren Emissionen verbunden sind, jedoch noch im Rahmen der Zumutbarkeit für ein Mischgebiet liegen. Dazu zählt beispielsweise ein Gartenbaubetrieb, bei dem durch Maschinenbetrieb, Lieferverkehr und Freiflächenlagerung eine erhöhte Geräusch- und Geruchsentwicklung auftreten kann. Im Rahmen der Kontingentierung wurden diesen Flächen gezielt höhere Emissionskontingente zugewiesen, um eine flexible gewerbliche Nutzung zu ermöglichen und gleichzeitig die Wohnnutzung in den übrigen Bereichen zu schützen.

- Die relevanten Immissionsorte sind der Anlage 5.1 der schalltechnischen Untersuchung 8669.1/2024-RK der Ingenieurbüro Kottermair GmbH, Altomünster, vom 13.08.2025 zu entnehmen.
- Hinsichtlich des Verkehrslärms (Straße und Schiene) werden gemäß der schalltechnischen Untersuchung der Ingenieurbüro Kottermair GmbH im Geltungsbereich des Bebauungsplans die Orientierungswerte des Beiblatts 1 der DIN 18005 und die Immissionsgrenzwerte der 16. BImSchV für die geplanten Gebietsnutzungen (allgemeines Wohngebiet, Mischgebiet und Gewerbegebiet) eingehalten bzw. teilweise überschritten. Die Festsetzung der einzelnen Gebietsnutzungen im Geltungsbereich des Bebauungsplans ist gleichwohl zulässig, denn die Überschreitungen durch den auf das Plangebiet einwirkenden Verkehrslärm der St 2050 "Münchner Straße" und der Bahnstrecke "Dachau Altomünster", können nach den Ergebnissen der schalltechnischen Untersuchung der Ingenieurbüro Kottermair GmbH durch die in den Festsetzungsvorschlägen getroffenen baulichen und passiven Schallschutzmaßnahmen ausgeglichen werden. Diese Schallschutzmaßnahmen werden im Bebauungsplan auch festgesetzt.

Hinweise durch Text:

- Für die Beurteilung des Bauvorhabens ist nach der BauVorlV für die Bauaufsichtsbehörde im Genehmigungsverfahren und die Gemeinde im Freistellungsverfahren eine schalltechnische Untersuchung vorzulegen, mit der nach Abschnitt 5 der DIN 45691:2006-12 nachzuweisen ist, dass die festgesetzten Emissionskontingente der Bebauungsplansatzung eingehalten werden.
- Im Baugenehmigungsverfahren bzw. im Genehmigungsfreistellungsverfahren ist zwingend der Schallschutznachweis nach DIN 4109-1:2018-01 für die Gebäude (alle Fassadenseiten) mit schutzbedürftiger Nutzung (Wohn-, Büronutzungen etc.) zu führen, falls die in der Anlage A5.2/1 Punkt 5 b der eingeführten BayTB (Bayerische Technische Baubestimmungen, Ausgabe Februar 2025) genannten maßgeblichen Außenlärmpegel überschritten sind.
- Gemäß Art. 13 Abs. 2 BayBO müssen Gebäude einen ihrer Nutzung entsprechenden Schallschutz haben. Geräusche, die von ortsfesten Einrichtungen in baulichen Anlagen oder auf Baugrundstücken ausgehen, sind so zu dämmen, dass Gefahren oder unzumutbare Belästigungen nicht entstehen. Gemäß § 12 BauVorlV müssen die Berechnungen den nach bauordnungsrechtlichen Vorschriften geforderten Schall- und Erschütterungsschutz nachweisen.

- Für Außenwohnbereiche wird grundsätzlich von höheren Lärmerwartung ausgegangen als in innen liegenden Aufenthaltsräumen. Es müssen jedoch auch in Außenwohnbereichen Kommunikations- und Erholungsmöglichkeiten gesichert sein (vgl. hierzu VGH Mannheim, Urteil vom 17.6.2010 5 S 884/09). Anzunehmen ist, dass gesunde Aufenthaltsverhältnisse jedenfalls auch dann noch vorhanden sind, wenn der Beurteilungspegel in den Außenwohnbereichen in Höhe des zulässigen Immissionsgrenzwertes der 16. BImSchV für ein Mischgebiet von bis zu 64 dB(A) am Tag liegt. Da Außenwohnbereiche in der Regel v.a. tagsüber (6.00 22.00 Uhr) genutzt werden, kann die Schutzbedürftigkeit auf den Tageszeitraum beschränkt werden. Mit geeigneten Maßnahmen z.B. durch abschirmende Maßnahmen ((Teil-) Einhausung, Vorsprünge etc.) oder Situierung der Freibereiche auf schallabgewandte Gebäudeseiten kann entgegengewirkt werden.
- Die in den Festsetzungen des Bebauungsplans genannten DIN-Normen und weiteren Regelwerke werden zusammen mit diesem Bebauungsplan während der üblichen Öffnungszeiten im Markt Markt Indersdorf, Zimmer xx (zu empfehlen dort, wo der B-Plan zur Einsicht ausliegt) an Werktagen während der Geschäftszeiten eingesehen werden. Die betreffenden DIN- Vorschriften sind auch archivmäßig hinterlegt beim Deutschen Patent- und Markenamt.

Altomünster, 13.08.2025 Ingenieurbüro Kottermair GmbH

Andreas Kottermair Stv. Fachlich Verantwortlicher

Roman Knoll Fachkundiger Mitarbeiter

2. Aufgabenstellung

Der Markt Indersdorf, im Landkreis Dachau, beabsichtigt die Aufstellung des Bebauungsplanes Nr. 94 mit der Bezeichnung "Niederroth – Richtung Kreut". Innerhalb des Bebauungsplanes ist die Ausweisung eines allgemeinen Wohngebiets (WA), eines Mischgebietes (MI) sowie eines Gewerbegebiets (GE) geplant. Vor diesem Hintergrund ist durch unser Ingenieurbüro durchzuführen:

- Berechnung der Verkehrslärmimmissionen durch die Münchner Straße (St 2050) und die Bahnstrecke Dachau Altomünster auf das geplante Bebauungsplangebiet
- Festsetzung von Emissionskontingenten nach DIN 45691:2006-12 für die Gewerbeund Mischgebietsflächen des geplanten Bebauungsplangebietes
- Darstellung der maßgeblichen Außenlärmpegel nach DIN 4109-1:2018-01.
- Die Dimensionierung einer Variante von Schallschutzmaßnahmen im Falle von Überschreitungen bzw. falls erforderlich planerische Änderungen vorzuschlagen.
- Erarbeiten von Textvorschlägen für Satzung und Begründung.

Für unser Ingenieurbüro, Messstelle nach § 29b BImSchG, bestand die Aufgabe, die schallschutztechnische Verträglichkeit nach den einschlägigen rechtlichen und technischen Regelwerken zu ermitteln zu bewerten. Die Ausgangsdaten zum Verkehrslärm sind im Kapitel 7 und in Bezug durch durchzuführenden Geräuschkontingentierung im Kapitel 8 aufgeführt.

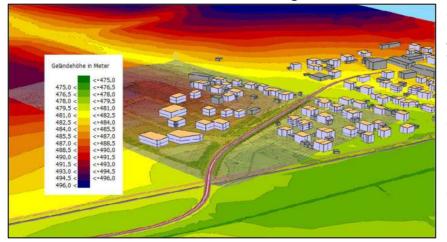
3. Ausgangssituation und örtliche Gegebenheiten

3.1. Örtliche Gegebenheiten

Der Geltungsbereich befindet sich im Ortsteil Niederroth, dem südlichen Ortsrand vorgelagert. Aus den nachfolgenden Abbildungen ist die örtliche Situation ersichtlich.

Abbildung 1: Übersichtdarstellung zur Lage des Gebietes nach /10/

Abbildung 2: Übersichtdarstellung zur Lage des Gebietes nach /10/


Abbildung 3: Planzeichnung zum geplanten Bebauungsplan nach /28/

NIEDERROTH

Abbildung 4: Auszug FNP des Marktes Markt Indersdorf, Bereich Niederroth /22/

Das Gelände wird innerhalb des EDV-Programms /21/ unter Berücksichtigung der Höhen-

daten aus der Grundlage /11/ und den Planungsunterlagen /28/ digital nachgebildet. Das digitale Geländemodell (DGM) zur Grundlage für die Berechnung zum Verkehrslärm ist aus der nebenstehenden Grafik ersichtlich, wobei noch ein Übersichtsplan hinterlegt ist.

Die Berechnungen zur Geräuschkontingentierung erfolgen entsprechen den Rechenregeln der DIN 45691:2006-12 /19/, wobei ausschließlich die geometrische Ausbreitungsdämpfung zu berücksichtigen ist. Ein Geländemodell wird nicht verwendet.

3.2. Immissionsorte

Die Darstellung der Beurteilungspegel aus dem Verkehrslärm (Gesamtverkehrslärm Straße und Schiene) erfolgt sowohl flächenhaft mittels Rasterlärmkarten (RLK) als auch gebäudebezogen mittels Gebäudelärmkarten (GLK) an entsprechenden Beispielgebäuden. Die Beurteilungspegel einzeln, aus Schiene und Straße sind tabellarisch in der Anlage 3 bzw. Anlage 4 in Bezug zu den Beispielgebäuden enthalten. In den einzelnen Anlagen werden die Beurteilungspegel "Verkehrslärm gesamt" in den entsprechenden Grafiken stockwerksbezogen an den Beispielbebauungen (Anlage 2.1 bis Anlage 2.4) sowie flächenhaft innerhalb der Gebietsparzellen in der Anlage 2.5 und Anlage 2.6 dargestellt.

Über die Farbskala ist dabei der entsprechende Konflikt zum Orientierungswert des Beiblatts 1 der DIN 18005 bzw. zum Immissionsgrenzwert der Verkehrslärmschutzverordnung (16. BImSchV) aufgezeigt. Die Immissionsorthöhe zum Verkehrslärm wird bei Gebäuden in SoundPLAN /21/ für das Erdgeschoss auf Geländehöhe +2,8 m (0,2 m über Fensteroberkante), jedes weitere Stockwerk ist mit +2,8 m berücksichtigt. Diese Höhenangaben werden auch bei der flächenhaften Darstellung des Verkehrslärms mittels Rasterlärmkarten berücksichtigt.

Die Beispielbebauungen wurden innerhalb der Gebietsparzellen zum Teil auch direkt an die Baugrenzen gelegt, um die maximalen Beurteilungspegel dort zu erhalten und eine entsprechende Bewertung vornehmen zu können. Zudem wurden Gebäude auch etwas zurückversetzt. Hinsichtlich der Bewertung sind vorrangig die ersten Parzellen zu den maßgeblichen Verkehrsquellen hin berücksichtigt. Die Berechnungen erfolgten beispielhaft für das Erdgeschoss (EG) und ein erstes Obergeschoss (1.0G).

Die relevanten Immissionsorte zur Geräuschkontingentierung des Bebauungsplans "Niederroth – Richtung Kreut" sind in Anlage 5 dargestellt. Gemäß DIN 45691:2006 /19/ wird die Emissionshöhe und die Immissionsorthöhe identisch angesetzt, im vorliegenden Fall mit 0 m. Die maßgeblichen Immissionsorte liegen gemäß dieser Norm außerhalb des Plangebiets und sind mit IO1 bis IO7 bezeichnet. Die Immissionsorte IO 1 und IO 2 befinden sich innerhalb des Bebauungsplanes Nr. 25 "Bachstraße" /23/, der ein allgemeines Wohngebiet ausweist. Der Immissionsort IO3 repräsentiert ein bereits geplantes Wohnhaus auf Flurstück Nr. 119/3, das nach Rücksprache mit der Verwaltung des Marktes Markt Indersdorf /29/ genehmigt wurde und ebenfalls als allgemeines Wohngebiet einzustufen ist, obwohl es keinem Bebauungsplan zugeordnet ist. Die Immissionsorte IO4 und IO5 liegen im Geltungsbereich des Bebauungsplans Nr. 33 /24/, der ein reines Wohngebiet festsetzt. Die Immissionsorte IO6 und IO7 befinden sich im Bereich der 2. Änderung und Erweiterung des Bebauungsplans Nr. 33 /26/, der als allgemeines Wohngebiet ausgewiesen ist. Für diese Planung wurde durch unser Büro eine entsprechende schalltechnische Untersuchung /25/ durchgeführt.

4. Quellen- und Grundlagenverzeichnis

- /1/ Bundes-Immissionsschutzgesetz (BImSchG) i.d.F. der Bekanntmachung vom 17.05.2013 (BGBl. I S. 1274), zuletzt geändert durch Artikel 11 Absatz 3 vom 26. Juli 2023 (BGBl. 2023 I Nr. 202)
- /2/ Verordnung über die bauliche Nutzung der Grundstücke (Baunutzungsverordnung BauNVO), Baunutzungsverordnung in der Fassung der Bekanntmachung vom 21. November 2017 (BGBl. I S. 3786), die zuletzt durch Artikel 2 des Gesetzes vom 3. Juli 2023 (BGBl. 2023 I Nr. 176) geändert worden ist
- /3/ DIN-Richtlinie 18005:2023-07, "Schallschutz im Städtebau Grundlagen und Hinweise für die Planung", Stand: Juli 2023, mit Beiblatt 1 "Schalltechnische Orientierungswerte für die städtebauliche Planung", Stand: Juli 2023
- /4/ Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV) vom 12. Juni 1990 (BGBl. I S. 1036), die durch Artikel 1 der Verordnung vom 04. November 2020 (BGBl. I S. 2334) geändert worden ist; mit Anlage 2 "Berechnung des Beurteilungspegels für Schienenwege (Schall 03)
- /5/ Richtlinien für den Lärmschutz an Straßen, RLS-90, Stand: April 1990
- /6/ Richtlinien für den Lärmschutz an Straßen, RLS-19, Ausgabe 2019 [BayMBl. 2021 Nr. 255 vom 7. April 2021, Az. 49-43812-1-2]
- /7/ Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm), vom 26. August 1998 (GMBl Nr. 26/1998 S. 503) zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5) in Kraft getreten am 9. Juni 2017 [mit Schreiben des BUM zur Korrektur Buchstaben Nr. 6.5 Satz 1 die Angabe "Buchstaben d bis f" durch die Angabe "Buchstaben e bis g" ersetzt werden müssen. In Nr. 7.4 die Angabe "Buchstaben c bis f" durch die Angabe "Buchstaben c bis g"]
- /8/ OVG Münster, Az: 2 B 1095/12, vom 16.11.2012
- /9/ Schreiben des Bayerischen Staatsministeriums für Umwelt und Verbraucherschutz (StMUV) vom 24.08.2016, Zeichen 72a-U8718.5-2016/1-1 "TA Lärm; Vollzug des Bebauungs- und Immissionsschutzrechts, maßgebliche Immissionsorte"
- /10/ BayernAtlasPlus: Topografische Karten und Luftbildansichten und Bebauungspläne im Internet, Stand: April 2025
- /11/ Landesamt für Digitalisierung, Breitband und Vermessung, München, DGM1-Meter und CityGML-Daten im UTM-32-System, Stand: April 2025
- /12/ Verkehrsmengenzahlen zur Verkehrsbelegung der relevante Straße aus der Grundlage Verkehrsmengen Atlas Bayern im Rahmen des Bayerischen Straßeninformationssystem BAYSIS, Stand vom Jahr 2023, mit Angaben zum Straßendeckschichttyp

- /13/ Verkehrszahlen Bahn AG, E-Mail zu den Verkehrszahlen der Strecke/n 5502 im Abschnitt "Niederroth Markt Indersdorf (Prognose 2030 DT)
- /14/ DIN 4109/11.89 "Schallschutz im Hochbau" mit Änderung A1 vom Januar 2001 und Beiblatt 1 vom November 1989 1989 [zurückgezogen, in TA Lärm /7/ noch enthalten]
- /15/ DIN 4109-1:2018-01 Schallschutz im Hochbau Teil 1: Mindestanforderungen, Stand: Januar 2018; in Bayern als Technische Baubestimmung am 01.04.2021 eingeführt
- /16/ DIN 4109-2:2018-01 "Schallschutz im Hochbau Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen"; in Bayern seit 01.04.2021 über weitere Maßgaben gem. Art. 81a Abs. 2 BayBO baurechtlich eingeführt
- /17/ Bayerische Technische Baubestimmungen (BayTB), Ausgabe Februar 2025
- /18/ Bayerische Bauordnung (BayBO) in der Fassung der Bekanntmachung vom 14. August 2007 (GVBl. S. 588, BayRS 2132-1-B), d die zuletzt durch die §§ 12 und 13 des Gesetzes vom 23. Dezember 2024 (GVBl. S. 605) und durch § 4 des Gesetzes vom 23. Dezember 2024 (GVBl. S. 619) geändert worden ist
- /19/ DIN 45691:2006-12, Geräuschkontingentierung, vom Dezember 2006
- /20/ VDI 2719 "Schalldämmung von Fenstern und deren Zusatzeinrichtungen", Stand: August 1987
- /21/ SoundPLAN-Manager, Version 9.1 Braunstein + Berndt GmbH, 71522 Backnang Berechnungssoftware mit Systembibliothek
- /22/ Flächennutzungsplan des Marktes Markt Indersdorf über die eigene Homepage, (Download 03.2025)
- /23/ Bebauungsplan Nr. 25 "Bachstraße", Marktgemeinde Markt Indersdorf (BayernAtlas, Bebauungspläne im Internet)
- /24/ Bebauungsplan Nr. 33 Birkenstraße, Ursprungsfassung und 1. Erweiterung, übermittelt durch den Markt Indersdorf per E-Mail 27.04.2021 zu /25/ (keine Änderungen nach /29/ anzunehmen)
- /25/ Schalltechnische Untersuchung durch unser Büro zur 2. Änderung und Erweiterung des Bebauungsplanes Nr. 33 mit der Bezeichnung "Birkenstraße" im Ortsteil Niederroth der Marktgemeinde Markt Indersdorf, Projekt 7461.1/2021-RK vom 30.04.2021
- /26/ Bebauungsplanes Nr. 33, "Birkenstraße 2. Änderung" übermittelt durch den Markt Markt Indersdorf per E-Mail 29.04.2025, Rechtskraft 07.02.2025
- /27/ Bebauungsplan Nr. 19/II "Industrie- und Gewerbegebiet Karpfhofen" Marktgemeinde Markt Indersdorf, Urplan, Rechtskraft 20.11.1984 (BayernAtlas, Bebauungspläne im Internet)

- /28/ Planungsunterlagen zum geplanten Bebauungsplan Nr. 94, "Niederroth Richtung Kreut", Planung: Frank Bernhard Reimann, Dipl.-Ing. Univ. Architekt+Stadtplaner, Stadelbergerstraße 24a, 82256 Fürstenfeldbruck, Planzeichnung und Entwurf zur Satzung (Stand 21.03.2025)
- /29/ Rücksprachen mit Frau Anna-Maria Loderer (Verwaltungsbauamt) Markt Indersdorf über die Einstufung der Baugenehmigung zur Flurnummer 113/9 (Wohnhaus) sowie über ein entsprechendes Ergänzungsgebiet
- /30/ Bebauungsplanes Nr. 33, "Birkenstraße 2. Änderung" übermittelt durch den Markt Markt Indersdorf per E-Mail 29.04.2025, Rechtskraft 07.02.2025
- /31/ Dr. Parzefall: Lärmschutz in der Bauleitplanung, Schreiben IIB5-4641-002/10, Bayerisches Staatsministerium des Innern, für Bau und Verkehr, Juli 2014
- /32/ Urteil BVerwG 4 CN 2.06 vom 22.03.2007 [Abwägbarkeit aktiver passiver Schallschutz]
- /33/ Beschluss Niedersächsisches OVG / OVG Lüneburg 1. Senat 1 MN 147/19 vom 21.02.2020 [Wohngebietsausweisung bei hoher Lärmvorbelastung, Lärmwerte im Gebäudeinneren, im Anschluss an /32/]
- /34/ Urteil BayVGH 2 N 21.184 vom 29.03.2022 [Höhe von Lärmkontingenten für "uneingeschränkte Flächen"]
- /35/ Juris Praxisreport 19.05.2022, Emissionskontingentierung im Gewerbegebiet gemäß DIN 45691, Anmerkung zu VGH München, Beschluss vom 29.03.2022, 2 N 21.184 von Prof. Dr. Ferdinand Kuchler, RA und FA für Verwaltungsrecht, Görg Partnerschaft von Rechtsanwälten mbB, München
- /36/ Urteil VGH München vom 12.08.2019 9 N 17.1046 [Festsetzung von Emissionskontingenten für ein Gewerbegebiet, §1 Abs. 4 Satz 1 Nr. 2 BauNVO]
- /37/ Urteil BVerwG 4CN 8.19 vom 29.Juni 2021 [Lärmkontingentierung, Teilgebiete mit ausreichend hohen Emissionskontingenten]

5. Immissionsschutzrechtliche Vorgaben

5.1. Allgemeine Anforderungen an den Schallschutz

Die grundlegenden Anforderungen zur Berücksichtigung des Schallschutzes in der städtebaulichen Planung ergeben sich aus der DIN 18005 in Verbindung mit deren Beiblatt 1/3/.

5.2. Anforderungen an den Schallschutz nach DIN 18005:2023-07

Die Lärmarten "Verkehr" und "Gewerbe" sind gemäß der geltenden Rechtslage getrennt voneinander zu untersuchen und zu beurteilen. Im Beiblatt 1 zur DIN 18005 /3/ sind schalltechnische Orientierungswerte für die städtebauliche Planung angegeben. Die Orientierungswerte sollten bereits auf den Rand der Bauflächen oder der überbaubaren Grundstücksflächen in den jeweiligen Baugebieten oder der Flächen sonstiger Nutzung bezogen werden. Bei Außen- und Außenwohnbereichen gelten grundsätzlich die Orientierungswerte des Zeitbereichs "tags".

Tabelle 2: Orientierungswerte für den Beurteilungspegel Lr nach der DIN 18005

	Orientierungswert (ORW)			
ugebiet	Verkehrslärm ^a (Straße, Schiene, Schiff)		Anlagenlärm (Industrie, Gewerbe, Freizeit, vergleichbare öffentliche Anlagen)	
	L _r ; dB(A)		L _r , dB(A)	
	Tag	Nacht	Tag	Nacht
Reine Wohngebiete (WR)	50	40	50	35
Allgemeine Wohngebiete (WA), Kleinsiedlungsgebiete (WS), Wochenendhausgebiete, Ferienhausgebiete, Campingplatzgebiete	55	45	55	40
Friedhöfe, Kleingartenanlagen, Parkanlagen	55	55	55	55
Besondere Wohngebiete (WB)	60	45	60	40
Dorfgebiete (MD), Dörfliche Wohngebiete (MDW), Mischgebiete (MI), Urbane Gebiete (MU)	60	50	60	45
Kerngebiet (MK)	63	53	60	45
Gewerbegebiet (GE)	65	55	65	50
Sonstige Sondergebiete (SO) sowie Flächen für den Gemeinbedarf, soweit sie schutzbedürftig sind, je nach Nutzungsart ^b	45 bis 65	35 bis 65	45 bis 65	35 bis 65
Industriegebiete (GI) ^c	-	-	-	-

Die dargestellten Orientierungswerte gelten für Straßen-, Schienen- und Schiffsverkehr. Abweichend davon schlägt die WHO für den Fluglärm zur Vermeidung gesundheitlicher Risiken deutlich niedrigere Schutzziele vor.

Als Tagzeit gilt dabei der Zeitraum von 06.00 Uhr - 22.00 Uhr, als Nachtzeit der Zeitraum von 22.00 Uhr - 06.00 Uhr.

b Für Krankenhäuser, Bildungseinrichtungen, Kurgebiete oder Pflegeanstalten ist ein hohes Schutzniveau anzustreben.

Für Industriegebiete kann kein Orientierungswert angegeben werden.

Die genannten Orientierungswerte sind als eine Konkretisierung für Anforderungen an den Schallschutz im Städtebau aufzufassen. Der Belang des Schallschutzes ist bei der in der städtebaulichen Planung erforderlichen Abwägung der Belange als ein wichtiger Planungsgrundsatz neben anderen Belangen– z.B. dem Gesichtspunkt der Erhaltung bestehender Stadtstrukturen– zu verstehen. Die Abwägung kann in bestimmten Fällen bei Überwiegen anderer Belange– insbesondere bei Maßnahmen der Innenentwicklung– zu einer entsprechenden Zurückstellung des Schallschutzes führen.

Als wichtiges Indiz für das Vorliegen schädlicher Umwelteinwirkungen durch Verkehrslärmimmissionen werden in der Rechtsprechung im Rahmen der Bauleitplanung die Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV, /4/) herangezogen. Anzuwenden ist die Verkehrslärmschutzverordnung jedoch nicht, da sie nur für den Neubau bzw. die wesentliche Änderung von Verkehrswegen relevant ist.

Tabelle 3: Immissionsgrenzwerte der 16. BImSchV (Auszug)

Cohiotaoinatufuna	Immissionsgrenzwerte		
Gebietseinstufung	Tag	Nacht	
in reinen und allgemeinen Wohngebieten und Kleinsiedlungsgebieten	59 dB(A)	49 dB(A)	
in Kerngebieten, Dorfgebieten, Mischgebieten und Urbanen Gebieten	64 dB(A)	54 dB(A)	
In Gewerbegebieten (GE)	69 dB(A)	59 dB(A)	
Industriegebiet (GI)	Keine Angabe	Keine Angabe	

Analog zur DIN 18005 gilt als Tagzeit der Zeitraum von 06.00 Uhr – 22.00 Uhr, als Nachtzeit der Zeitraum von 22.00 Uhr – 06.00 Uhr.

5.2.1. Hinweise zu Außenwohnbereiche

Balkone, Loggien und Terrassen sind sogenannte Außenwohnbereiche, wobei grundsätzlich in Außenwohnbereichen nachts nicht von einem dauerhaften Aufenthalt auszugehen ist. Für den Schutze der Außenwohnbereiche gibt es in der Bauleitplanung keine eigenständige gesetzliche Regelung, die den Schutz von Außenwohnbereichen isoliert behandelt.

In Außenwohnbereichen wird grundsätzlich jedoch von einer höheren Lärmerwartung ausgegangen als in innen liegenden Aufenthaltsräumen. Es müssen jedoch auch in Außenwohnbereichen Kommunikations- und Erholungsmöglichkeiten gesichert sein (vgl. hierzu VGH Mannheim, Urteil vom 17.6.2010 – 5 S 884/09). Anzunehmen ist, dass gesunde Aufenthaltsverhältnisse jedenfalls auch dann noch vorhanden sind, wenn der Beurteilungspegel in den Außenwohnbereichen in Höhe des zulässigen

Immissionsgrenzwertes der 16. BImSchV für ein Mischgebiet von bis zu 64 dB(A) am Tag liegt. Da Außenwohnbereiche in der Regel v.a. tagsüber (6.00 – 22.00 Uhr) genutzt werden, kann die Schutzbedürftigkeit auf den Tageszeitraum beschränkt werden.

Wir empfehlen für Planungen, Außenwohnbereiche an Fassaden mit Immissionsbelastungen > 64 dB(A) - und damit ab einer Überschreitung des tagsüber geltenden MI-Immissionsgrenzwertes der 16. BImSchV - abzuschirmen, z.B. mit einer Balkonverglasung, die auch beweglich sein kann. Bei geschlossener Ausführung der Abschirmung kann die Maßnahme zusätzlich auch als Abschirmung für das dahinterliegende Wohnraumfenster angesehen werden. Es ist dabei zu beachten, dass eine Loggia bzw. der Wintergarten selbst nicht als schutzbedürftiger Aufenthaltsraum einer Wohnung eingestuft wird, wofür höhere Anforderungen gelten würden.

5.3. Grundsätzliche Aussagen zum Verkehrslärm (Allgemein)

Gemäß §1 Abs. 6 Nr. 1 BauGB sind bei der Aufstellung von Bebauungsplänen die allgemeinen Anforderungen an gesunde Wohnverhältnisse zu berücksichtigen. Es handelt sich um einen (von mehreren) im Rahmen des Abwägungsgebots (§1 Abs. 7 BauGB) zu beachtenden Belang.

Für die Bauleitplanung sind (anders als z.B. für die Errichtung oder wesentliche Änderung eines Verkehrsweges nach der 16. BImSchV (Verkehrslärmschutzverordnung) keine konkreten Grenzwerte zum Schutz der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche normativ festgelegt. Verschiedene technische Regelwerke, insbesondere die DIN 18005 enthalten Orientierungswerte für die Zumutbarkeit von Lärmbelastungen. Diese gelten nach der ständigen Rechtsprechung der Verwaltungsgerichte grundsätzlich auch im Rahmen der Bauleitplanung. Da es sich allerdings gerade nicht um konkrete Grenzwerte handelt, ist die <u>Grenze</u> des Zumutbaren von den Trägern der Bauleitplanung (und den Gerichten) letztlich immer anhand einer umfassenden Würdigung aller Umstände des <u>Einzelfalls</u> und insbesondere der speziellen Schutzwürdigkeit des jeweiligen Baugebiets zu bestimmen. Die Orientierungswerte geben (nur) Anhaltspunkte für die Zumutbarkeit von Lärmbeeinträchtigungen im Regelfall.

Die Anforderungen an gesunde Wohnverhältnisse sind bei der Aufstellung eines Bebauungsplanes in der Regel gegeben, wenn die Orientierungswerte der DIN 18005 an schutzbedürftigen Gebäuden in Geltungsbereich des Bebauungsplanes eingehalten werden.

Andererseits ist in der Rechtsprechung des Bundesverwaltungsgerichtes (BVerwG) anerkannt, dass die Überschreitung der Orientierungswerte nicht zwangsläufig bedeutet, dass die Anforderungen an gesunde Wohnverhältnisse nicht eingehalten werden. Vielmehr kann im Einzelfall auch eine Überschreitung dieser Orientierungswerte mit dem Abwägungsgebot vereinbar sein. Dies ist in der Rechtsprechung anerkannt für Überschreitungen um 5 dB(A) und sogar um bis zu 10 dB(A).

vgl. BVerwG, Urteil vom 22.03.2007 – 4CN 2/06, juris; BVerwG, Beschluß vom 18.12.1990 -4 N 6.88, juris

Voraussetzung ist aber, dass es hinreichend gewichtige Gründe gibt, schutzbedürftige Bebauung trotz der vorhandenen Lärmbelastung an dem konkreten Standort zu realisieren. Dazu gehört, dass Maßnahmen des aktiven Schallschutzes nicht möglich oder aus hinreichend gewichtigen Gründen nicht vorzugswürdig sind. Darüber hinaus muss jedenfalls im Innern der Gebäude angemessener Lärmschutz gewährleistet werden.

Durch Festsetzungen im Bebauungsplan, gestützt auf § 9 Abs. 1 Nr. 24 BauGB, ist es möglich, durch bauliche Schallschutzmaßnahmen (lärmabgewandte Orientierung der schutzbedürftigen Räume) bzw. passive Schallschutzmaßnahmen (Verwendung schallschützender Außenbauteile) im Inneren von schutzbedürftigen Räumen einen angemessenen Schallschutz zu erhalten. Auch kommt unter Umständen eine geschlossene Riegelbebauung in Betracht, um die rückwärtigen Grundstücksflächen effektiv abzuschirmen. In jedem Fall ist aber zu beachten, dass in einem durch Verkehrslärm vorbelasteten Bereich ein erhöhter Rechtfertigungsbedarf besteht. Dabei gilt, dass die für die Planung streitenden Belange umso gewichtiger sein müssen, je stärker die Verkehrslärmbelastung im Plangebiet bzw., je größer die dadurch belastete Fläche ist. Eine solche Bauleitplanung kommt aber insbesondere dann- trotzdem- in Betracht, wenn keine oder keine auch nur annähernd ähnlich geeignete Fläche für die weitere Siedlungsentwicklung zur Verfügung steht.

Dies entspricht auch dem Inhalt des Beschlusses /33/ des OVG Lüneburg 1. Senat / OVG Niedersachsen 1 MN 147/19 vom 21.02.2020 im Anschluss an das BVerwG, Urteil vom 22.03.2007 – 4CN 2/06 nach /32/.

5.4. Anforderungen nach DIN 45691:2006-12 (Geräuschkontingentierung)

Um möglichen Summenwirkungen von Lärmimmissionen mehrerer Betriebe/Anlagen gerecht zur werden, erfolgte zur Regelung der Intensität der Flächennutzung in den vergangenen Jahren die Festsetzung von Lärmkontingenten, sogenannte "immissionswirksame flächenbezogene Schallleistungspegel - IFSP". Diese werden durch die DIN 45691:2006-12 /19/ abgelöst. In dieser werden Verfahren und eine einheitliche Terminologie als fachliche Grundlage zur Geräuschkontingentierung in Bebauungsplänen für Industrie- oder Gewerbegebiete und auch für Sondergebiete beschrieben und rechtliche Hinweise für die Umsetzung gegeben. Der Hauptteil der Norm beschreibt die bisher vielfach übliche Emissionskontingentierung ohne Berücksichtigung der möglichen Richtwirkung von Anlagen.

Im Anhang A der DIN 45691:2006-12 wird aufgezeigt, wie in bestimmten Fällen die mögliche schalltechnische Ausnutzung eines Baugebietes durch zusätzliche oder andere Festsetzungen verbessert werden kann. Hierbei erfolgt ergänzend zur Emissionskontingentierung die Festsetzung sogenannter Zusatzkontingente:

- in bestimmte Richtungen ("Erhöhung der Emissionskontingente für einzelne Richtungssektoren" nach Punkt A2 der DIN),
- für einzelne Immissionsorte ("Erhöhung der Emissionskontingente für einzelne Immissionsorte" nach Punkt A3 der DIN) oder
- für einzelne umliegende Gebietsnutzungen ("Festsetzung von nach betroffenen Gebieten unterschiedenen Emissionskontingenten" nach Punkt A4 der DIN).

Ferner wird in der DIN eine sogenannte Relevanzgrenze definiert, die besagt, dass unabhängig von der Einhaltung der Emissionskontingente – ggf. unter Berücksichtigung von Zusatzkontingenten – ein Vorhaben auch dann die Festsetzungen des Bebauungsplanes erfüllt, wenn die Beurteilungspegel L_r die zutreffenden Immissionsrichtwerte an den maßgeblichen Immissionsorten um jeweils mindestens 15 dB(A) unterschreiten. Die Gemeinde kann die Anwendung der Relevanzgrenze durch Festsetzung ausschließen. Grundsätzlich wird bei der Berechnung der Emissionskontingente L_{EK} nur das reine Abstandsmaß ohne Bodendämpfung oder Luftabsorption berücksichtigt. Natürliche oder künstliche Abschirmungen auf dem Ausbreitungsweg, z. B. Gelände, Böschungen, aktive Schallschutzmaßnahmen, Gebäude usw. bleiben unberücksichtigt. Dabei werden die gewerblich zu nutzenden Flächen solange in Teilflächen unterteilt, bis ihre Abmessungen so gering sind, dass sie für die Berechnung als Punktschallquellen betrachtet werden können.

Die Differenz $_{\Delta}L$ zwischen dem Emissionskontingent L_{EK} und dem Immissionskontingent L_{IK} einer Teilfläche am jeweiligen Immissionsort ergibt sich aus ihrer Größe und dem Abstand ihres Schwerpunktes vom Immissionsort. Sie ist unter ausschließlicher Berücksichtigung der geometrischen Ausbreitungsdämpfung (= Abstandsminderung) wie folgt zu berechnen, wobei die Teilfläche in ausreichend kleine Flächenelemente zu zerlegen ist:

$$\Delta L_{i,j} = -10 \lg \sum_{k} \left(\frac{S_k}{4\pi s_{k,j}^2} \right) dB$$

 $s_{k,j} = Abstand$ des Immissionsorts vom Schwerpunkt des Flächenelements in m $\sum_k S_k = S_i = F$ lächengröße der Teilfläche in m².

Wenn die größte Ausdehnung einer Teilfläche i nicht größer als $0,5s_{i,j}$ ist, kann $\Delta L_{i,j}$ nach Gleichung (3) der DIN wie folgt berechnet werden:

$$\Delta L_{i,j} = -10 \lg \left(\frac{S_i}{4\pi S_{i,j}^2} \right) dB$$
 mit

s_{i,j} = Abstand des Immissionsortes vom Schwerpunkt der Teilfläche in m

 S_i = Flächengröße der Teilfläche in m^2 .

Öffentliche Verkehrsflächen, Grünflächen, allgemein Flächen, für die eine gewerbliche Nutzung ausgeschlossen ist, sind nach Kapitel 4.3 der DIN 45691:2006-12 von der Kontingentierung auszunehmen.

Zusatzkontingente für einzelne Richtungssektoren:

Innerhalb des Bebauungsplangebietes werden ein Bezugspunkt und von diesem ausgehend ein oder mehrere Richtungssektoren k festgelegt. Für jeden wird ein Zusatzkontingent $L_{EK,zus,k}$ so bestimmt, dass für alle untersuchten Immissionsorte j in dem Sektor k folgende Gleichung erfüllt ist:

$$L_{EK,zus,k} \le L_{PL,j} - 10 \lg \sum_{i} 10^{0,1(L_{EK,i} - \Delta L_{i,j})} dB$$

Die Zusatzkontingente sind auf ganze Dezibel abzurunden.

Im Bebauungsplan sind außer den Teilflächen auch der Bezugspunkt und die von ihm ausgehenden Strahlen darzustellen, die die Sektoren begrenzen. Die Sektoren sind zu bezeichnen.

5.4.1. Hinweis zur Kontingentierung (allgemein)

Entsprechend der aktuellen Rechtsprechung, v.a. durch das Bundesverwaltungsgericht BVerwG vom 07.03.2019 - 4 BN 45.18, muss innerhalb eines Bebauungsplangebietes bei der Ausweisung von GE- (auch GI-) Gebieten eine Fläche enthalten sein, die Tag und Nacht uneingeschränkt nutzbar ist ("interne" Gliederung). Bei Gewerbegebieten wäre dies nach DIN 18005 eine Fläche mit flächenbezogenen Schallleistungspegeln (FSP) von 60/60 dB(A) je m^2 Tag/Nacht, bei GI-Gebieten eine Fläche mit $L_{WA} = 65/65 \text{ dB}(A)$ je m^2 Tag/Nacht.

Wenn eine solche Fläche innerhalb des Plangebietes nicht realisierbar ist, ist eine gebietsübergreifende, sog. "externe" Gliederung zulässig, sofern dies in geeigneter Weise im Bebauungsplan selbst oder seiner Begründung dokumentiert wird. Falls ein solches Ergänzungsgebiet für die "externe" Gliederung in der Kommune nicht vorhanden und auch eine "interne" Gliederung nicht möglich ist, so muss das Gebiet als eingeschränktes Gewerbegebiet (GEe) mit detailliert genannten, zulässigen Nutzungen festgesetzt werden.

Im aktuellen Beschluss des BayVGH 2 N 21.184 vom 29.03.2022 /34/ hat das Gericht festgesetzte Emissionskontingente von 65/50 bzw. 65/52 dB(A) tags/nachts als für einen typischen Gewerbebetrieb ausreichend angesehen.

Der VGH München hat sogar ausdrücklich festgestellt, dass es in einem Gewerbegebiet auch 60 dB(A) tags als ausreichend ansieht (vgl. Rn. 18).). Demnach ist es für eine sog. "gebietsinterne" Gliederung eines Gewerbegebiets ausreichend, wenn ein (ausreichend großes) Teilgebiet mit mindestens diesen Kontingenten versehen wurde.

Weiter gilt: "Emissionskontingente, die (..) nachts 52 dB(A) betragen, dürften vor dem Hintergrund, dass auch ein an sich zu lauter Betrieb bei entsprechenden aktiven Schallschutzmaßnahmen und gegebenenfalls unter Beachtung gewisser organisatorischer Maßnahmen diese einhalten kann (vgl. Vietmeier, BauR 2018, 766), grundsätzlich keinen nicht erheblich belästigenden Gewerbebetrieb ausschließen."

Nach den Ausführungen /35/ von Herrn Rechtsanwalt Prof. Dr. Ferdinand Kuchler zum Beschluss des BayVGH 2 N 21.184 vom 29.03.2022 /34/ ist es demnach für eine sog. "gebietsinterne" Gliederung eines Gewerbegebiets ausreichend, wenn ein (ausreichend großes) Teilgebiet mit mindestens diesen Kontingenten tagsüber/nachts 60/52 dB(A) versehen wurde.

Hinweis zu den flächenbezogenen Schallleistungspegel

Die in der DIN 18005 genannten flächenbezogenen Schallleistungspegel (L_{WA} " von 60 dB(A) für GE-Gebiete, L_{WA} " von 65 dB(A) für GI-Gebiete) und die Abstandsangaben können v.a. bei größerer Entfernung zum Immissionspunkt nicht direkt mit den Emissionskontingenten L_{EK} der DIN 45691:2006-12 /19/ verglichen werden. Eine Angleichung der DIN 18005 /3/ an die neueren Erkenntnisse (DIN 45691 /19/) erfolgte bisher nicht.

5.5. Anforderungen nach TA Lärm

Je nach Schutzbedürftigkeit gelten nach /7/ folgende Immissionsrichtwerte:

Tabelle 4: Immissionsrichtwert TA Lärm (Auszug)

`				
Gebietseinstufung		Immissionsrichtwert		
		Tag	Nacht	
а	in Industriegebieten	70 dB(A)	70 dB(A)	
b	in Gewerbegebieten	65 dB(A)	50 dB(A)	
С	in urbanen Gebieten	63 dB(A)	45 dB(A)	
d	in Kern-/Dorf- und Mischgebieten	60 dB(A)	45 dB(A)	
е	in allgemeinen Wohngebieten und Kleinsiedlungsgebieten	55 dB(A)	40 dB(A)	
f	in reinen Wohngebieten	50 dB(A)	35 dB(A)	
g	in Kurgebieten, für Krankenhäuser und Pflegeanstalten	45 dB(A)	35 dB(A)	

Ein Zuschlag von 6 dB(A) für Tageszeiten mit erhöhter Empfindlichkeit ist für Wohngebiete (WR, WA) und Kurgebiete, Krankenhäuser und Pflegeanstalten zu berücksichtigen:

an Werktagen von 06:00 - 07:00 und 20:00 - 22:00 Uhr

an Sonn-/Feiertagen von 06:00 - 09:00 und 13:00 - 15:00 und 20:00 - 22:00 Uhr

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte tagsüber um nicht mehr als 30 dB(A) und nachts um nicht mehr als 20 dB(A) überschreiten.

Die Nachtzeit dauert von 22:00 - 06:00 Uhr.

In der Nachtzeit ist gemäß TA Lärm /7/ die volle Stunde mit den höchsten Beurteilungspegeln maßgebend (lauteste Nachtstunde).

Die maßgeblichen Immissionsorte liegen nach Abschnitt A.1.3 der TA Lärm /7/ bei bebauten Flächen 0,5 m vor dem geöffneten Fenster von schutzbedürftigen Räumen nach DIN 4109. Bei unbebauten oder bebauten Flächen, die keine Gebäude mit schützenswerten Räumen enthalten, liegen diese am Rand der Fläche, auf der nach Bau- und Planungsrecht Gebäude mit schutzbedürftigen Räumen errichtet werden dürfen. Die vorgenannten Vorschriften sind nach übereinstimmender Auffassung in der Rechtsprechung allerdings gesetzeskonform auszulegen. (Unbebaute) Punkte am Rand der Baugrenzen, die keine schutzbedürftigen Räume beinhalten, sind nicht in Blick zu nehmen, um die Lärmbetroffenheit der Nachbarschaft realistisch abschätzen zu können.

(OVG Münster, B. v. 16.11.2012- 2B 1095/12, zitiert nach juris, Rdnr. 66-68 /8/ und Schreiben des Bayerischen Staatsministeriums für Umwelt und Verbraucherschutz (StMUV) vom 24.08.2016 /9/).

Hinweis:

In Bayern wurde zum 01.04.2021 die DIN 4109:2018-01 bauaufsichtlich eingeführt. Eine Angleichung der TA Lärm (zuletzt geändert 2017) erfolgte bisher nicht.

5.5.1. TA Lärm - Vor- und Zusatzbelastung

Nach Kapitel 3.2.1 der TA Lärm gilt, dass die von der zu beurteilenden Anlage ausgehende Zusatzbelastung als nicht relevant anzusehen ist, sofern am Immissionspunkt die durch die Anlage verursachten Beurteilungspegel die Immissionsrichtwerte der TA Lärm an den maßgeblichen Immissionspunkten um mindestens 6 dB(A) unterschreiten. Eine Berücksichtigung der Vorbelastung ist dann nicht mehr erforderlich. Unter Vorbelastung werden dabei die Geräuschimmissionen aller Anlagen außer denen der zu beurteilenden Anlage verstanden.

Eine Berücksichtigung der Vorbelastung ist nur erforderlich, wenn aufgrund konkreter Anhaltspunkte absehbar ist, dass die zu beurteilende Anlage im Falle ihrer Inbetriebnahme relevant zu einer Überschreitung der IRW beitragen wird und nach Kapitel 4.2, Absatz c der TA Lärm Abhilfemaßnahmen bei den Anderen zur Gesamtbelastung beitragenden Anlagen aus tatsächlichen oder rechtlichen Gründen offensichtlich nicht in Betracht kommen.

5.5.2. TA Lärm - Einwirkungsbereich nach Punkt 2.2 der TA Lärm

<u>Einwirkungsbereich einer Anlage</u> sind die Flächen, in denen die von der Anlage ausgehenden Geräusche

- a) einen Beurteilungspegel verursachen, der weniger als 10 dB(A) unter dem für diese Fläche maßgebenden Immissionsrichtwert liegt, oder
- b) Geräuschspitzen verursachen, die den für deren Beurteilung maßgebenden Immissionsrichtwert erreichen.

Hinweis:

Die TA Lärm findet in der Bauleitplanung keine unmittelbare Anwendung. Bei der schalltechnischen Beurteilung von gewerblichen Anlagen, die im geplanten Gewerbegebiet zulässig sind, ist jedoch sicherzustellen, dass die Immissionsrichtwerte der TA Lärm an den maßgeblichen Immissionsorten durch die Summe aller einwirkenden Gewerbelärmimmissionen eingehalten werden. Daher ist bereits im Rahmen der Bauleitplanung darauf zu achten, dass die genannten Immissionsrichtwerte durch die Geräuschimmissionen sämtlicher im Plangebiet möglicher gewerblicher Nutzungen nicht überschritten werden können. Gegebenenfalls vorhandene schalltechnische Vorbelastungen durch außerhalb des Plangebiets gelegene gewerbliche Lärmquellen sind dabei ebenfalls zu berücksichtigen.

Um die Einhaltung der Immissionsrichtwerte an den relevanten Immissionsorten sicherzustellen, erfolgt eine Geräuschkontingentierung gemäß Kapitel 8 bzw. DIN 45691:2006-12.

5.6. Schallschutzmaßnahmen - Allgemein

Durch Schallschutzmaßnahmen sollen möglichst deutliche Pegelminderungen an den Immissionsorten erreicht werden. Grundsätzlich werden aktive, bauliche und passive Schallschutzmaßnahmen unterschieden.

<u>Aktive</u> Schallschutzmaßnahmen wie z.B. ein Lärmschutzwall, eine Lärmschutzwand oder eine Kombination von beiden, schirmen Lärm möglichst quellnah ab und sind anderen Schallschutzmaßnahmen vorzuziehen. Falls aktive Schallschutzmaßnahmen nicht möglich oder nicht ausreichend sind, sind bauliche Schallschutzmaßnahmen vorzusehen.

Gemäß der "Statistik des Lärmschutzes an Bundesfernstraßen 2020-2021" liegen die Durchschnittskosten bei Lärmschutz- und Gabionenwänden nach Tabelle 8 im Jahr 2021 bei € 644,00/m² nach € 524 je m² im Jahr 2020. Für Lärmschutzwälle einer Wallhöhe von 4 m ergeben sich nach der o.g. Statistik pro 1 m² wirksamer Abschirmfläche Kosten von € 154/m², bei 6 m Höhe von € 220,00/m².

Unter <u>baulichen</u> Schallschutzmaßnahmen ist z. B. eine Orientierung der Wohn- bzw.

Schlaf- und Ruheräume zur Lärm abgewandten Seite zu verstehen (s. Punkt 3.16 in /15/ DIN 4109:2018-01 "Schutzbedürftige Räume" bzw. Anmerkung 1 in der DIN 4109/11.89 /14/).

In den Fällen, in denen trotz Realisierung von aktiven und baulichen Schallschutzmaßnahmen eine Überschreitung der Orientierungswerte des Beiblatts 1 der DIN 18005 /3/ verbleibt, sind passive Schallschutzmaßnahmen (z. B. Schallschutzfenster, verglaste Balkone, Wintergärten) vorzusehen.

<u>Passive</u> Schallschutzmaßnahmen sind meist nur in Verbindung mit mechanischen Zulufteinrichtungen wirksam, da nach dem Beiblatt 1 der DIN 18005 /3/ bei Beurteilungspegeln über 45 dB(A) selbst bei nur teilweise geöffnetem Fenster ein ungestörter Schlaf häufig nicht mehr möglich ist. Nach der VDI 2719 /20/ sind für "Räume, in denen aufgrund ihrer Nutzung (z.B. Schlafräume) eine Stoßlüftung nicht möglich ist" zusätzliche Lüftungseinrichtungen bei einem Außengeräuschpegel $L_m > 50$ dB(A) erforderlich.

Um auch eine ausreichende Belüftung von Räumen sicherzustellen ist es beispielsweise sinnvoll, an lärmbelasteten Fassaden Wintergärten bzw. verglaste Balkone als passiven Schallschutz vorzusehen. Eine Nutzung solcher "Schallschleusen" als Aufenthaltsräume im Sinne der BayBO darf jedoch nicht möglich sein. Bei der Auswahl von Fenstern/Fenstertüren ist nicht die Schallschutzklasse der Fenster ausschlaggebend, sondern das bewertete Bauschalldämmmaß R'_w des jeweiligen, am Bau funktionsfähig eingebauten Fensters unter Berücksichtigung von Vorhaltemaßen für den Prüfstand.

Die Spektrum-Anpassungswerte C und Ctr sind zu beachten. Hiermit kann bereits in der Planung ganz gezielt auf die jeweilige Lärmsituation eingegangen werden.

<u>Hinweis:</u> Im Bereich Gewerbelärm sind passive Schallschutzmaßnahmen in Form von Schallschutzfenstern nicht zulässig, da hier nach TA Lärm im Beschwerdefall 0,5m vor dem geöffneten Fenster eines im Sinne der DIN 4109-1/11.89 schützenswerten Raumes gemessen wird.

Zur Hörbarkeit von Schallpegeldifferenzen:

Für das menschliche Lautstärkeempfinden wurde allgemein festgestellt, dass:

- 1 dB(A) Unterschied im direkten Vergleich gerade noch wahrnehmbar ist,
- 3 dB(A) Unterschied wahrnehmbar sind,
- 10 dB(A) Unterschied als doppelt so laut (oder halb so laut) empfunden werden

5.7. Anforderungen an den Schallschutz nach DIN 4109:2018-01

Die in Bayern seit 01.04.2021 bautechnisch eingeführte DIN 4109-1:2018-01 "Schallschutz im Hochbau" /15/ gilt u.a. zum Schutz von schutzbedürftigen Räumen gegen Außenlärm wie Verkehrslärm und Lärm aus Gewerbe- und Industriebetrieben, die in der Regel baulich nicht mit den Aufenthaltsräumen verbunden sind.

Schutzbedürftige Räume sind:

- Wohnräume, einschließlich Wohndielen und Wohnküchen;
- Schlafräume, einschließlich Übernachtungsräume in Beherbergungsstätten;
- Bettenräume in Krankenhäusern und Sanatorien;
- Unterrichtsräume in Schulen, Hochschulen und ähnlichen Einrichtungen;
- Büroräume;
- Praxisräume, Sitzungsräume und ähnliche Arbeitsräume.

Die Anforderungen an die gesamten bewerteten Bau-Schalldämm-Maße $R'_{w,ges}$ der Außenbauteile von schutzbedürftigen Räumen ergibt sich unter Berücksichtigung der unterschiedlichen Raumarten nach folgender Gleichung:

$R'_{w,ges} = L_a - K_{Raumart}$

Dabei ist:

 $K_{Raumart} = 25 dB$

$K_{Raumart} = 30 dB$	für Aufenthaltsräume in Wohnungen, Übernachtungsräume in
	Beherbergungsstätten, Unterrichtsräume und Ähnliches;
$K_{Raumart} = 35 dB$	für Büroräume und Ähnliches;
La	der maßgebliche Außenlärmpegel nach DIN 4109-2:2018-01 nach Kapitel 4.4.5.

für Bettenräume in Krankenanstalten und Sanatorien;

Mindestens einzuhalten sind:

$R'_{w,ges} = 35 dB$	fur Bettenraume in Krankenanstalten und Sanatorien;
$R'_{w,ges} = 30 dB$	für Aufenthaltsräume in Wohnungen, Übernachtungsräume in
	Beherbergungsstätten, Unterrichtsräume, Büroräume und Ähnliches.

Für gesamte bewertete Bau-Schalldämm-Maße von $R'_{w,ges} > 50$ dB sind die Anforderungen aufgrund der örtlichen Gegebenheiten festzulegen.

Die erforderlichen gesamten bewerteten Bau-Schalldämm-Maße $R'_{w,ges}$ sind in Abhängigkeit vom Verhältnis der vom Raum aus gesehenen gesamten Außenfläche eines Raumes S_s zur Grundfläche des Raumes S_G nach DIN 4109-2:2018-01, Gleichung (32) mit dem Korrekturwert K_{AL} nach Gleichung (33) zu korrigieren.

Der maßgebliche Außenlärmpegel nach DIN 4109-2:2018-01, nach Kapitel 4.4.5 ergibt sich für den Tag aus dem zugehörigen Beurteilungspegel (06.00 Uhr bis 22.00 Uhr) sowie für die Nacht aus dem zugehörigen Beurteilungspegel (22.00 Uhr bis 06.00 Uhr) plus

Zuschlag zur Berücksichtigung der erhöhten nächtlichen Störwirkung (größeres Schutzbedürfnis in der Nacht); dies gilt für Räume, die überwiegend zum Schlafen genutzt werden können. Entscheidend ist die Lärmbelastung derjenigen Tageszeit, die die höhere Anforderung ergibt. Maßgebliche Lärmquellen sind Straßen-, Schienen-, Luft-, Wasserverkehr und Industrie/Gewerbe.

Für die Bestimmung des "maßgeblichen Außenlärmpegels" bei Verkehrslärm (Straßen und Schiene) sind dem jeweiligen Beurteilungspegel 3 dB(A) hinzuzurechnen. Beträgt die Differenz der Beurteilungspegel zwischen Tag und Nacht weniger als 10 dB(A), so ergibt sich der maßgebliche Außenlärmpegel aus einem 3 dB(A) erhöhten Nacht-Beurteilungspegel zum Schutz des Nachtschlafes sowie einem Zuschlag von 10 dB(A).

Nach Kapitel 4.4.5.3 der DIN 4109-2:2018-01 gilt für den Schienenverkehr Folgendes:

 Aufgrund der Frequenzzusammensetzung von Schienenverkehrsgeräuschen in Verbindung mit dem Frequenzspektrum der Schalldämm-Maße von Außenbauteilen ist der Beurteilungspegel pauschal um 5 dB zu mindern.

Für die Bestimmung des "maßgeblichen Außenlärmpegels" bei Gewerbe- und Industrieanlagen ist gemäß Punkt 4.4.5.6 (DIN 4109:2018-01, Teil 2: Rechnerische Nachweise zur Erfüllung der Anforderungen) 3 dB(A) dem nach TA Lärm, für die jeweilige Gebietskategorie, angegebenen Tag-Immissionsrichtwert hinzuzurechnen. Besteht im Einzelfall eine Überschreitung der Immissionsrichtwerte der TA Lärm, dann sollte der tatsächliche Beurteilungspegel bestimmt und zur Ermittlung des maßgeblichen Außenlärmpegels 3 dB(A) addiert werden.

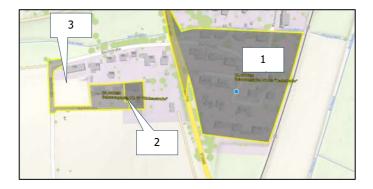
Beträgt die Differenz der Beurteilungspegel zwischen Tag und Nacht weniger als 10 dB(A), so ergibt sich der maßgebliche Außenlärmpegel aus einem 3 dB(A) erhöhten Nacht-Beurteilungspegel zum Schutz des Nachtschlafes sowie einem Zuschlag von 10 dB(A).

Rührt die Geräuschbelastung von mehreren (gleich- oder verschiedenartigen) Quellen her, so berechnet sich der resultierende Außenlärmpegel $L_{a,res}$, jeweils getrennt für Tag und Nacht, aus den einzelnen maßgeblichen Außenlärmpegeln $L_{a,i}$ nach folgender Gleichung

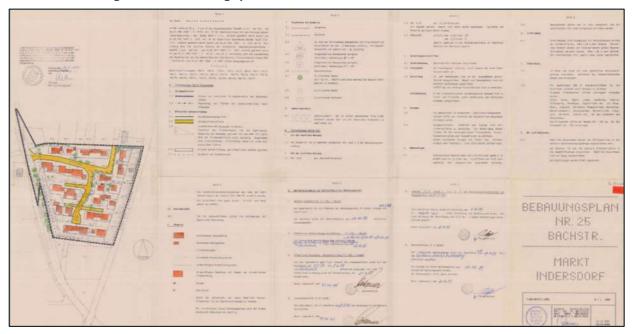
$$L_{\text{a,res}} = 10 \lg \sum_{i=1}^{n} (10^{0.1 L_{\text{a},i}}) \text{ (dB)}$$

Im Sinne einer Vereinfachung werden dabei unterschiedliche Definitionen der einzelnen maßgeblichen Außenlärmpegel in Kauf genommen.

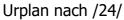
Die Addition von 3 dB(A) darf nur einmal erfolgen, d. h. auf den Summenpegel.


<u>Hinweis zur BayBO – BayTB (Februar 2025)</u>

Ein Nachweis der Luftschalldämmung von Außenbauteilen ist erforderlich, wenn

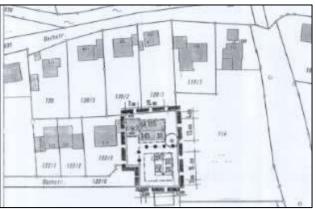

- a) der Bebauungsplan festsetzt, dass Vorkehrungen zum Schutz vor Außenlärm am Gebäude zu treffen sind (§ 9 Abs. 1 Nr. 24 BauGB) oder
- b) der "maßgebliche Außenlärmpegel" (Abschnitt 4.4.5 der DIN 4109-2:2018-01) auch nach den vorgesehenen Maßnahmen zur Lärmminderung gleich oder h\u00f6her ist als
 - 61 dB(A) bei Aufenthaltsräumen in Wohnungen, Übernachtungsräumen, Unterrichtsräumen und ähnlichen Räumen sowie bei Bettenräumen in Krankenhäusern und Sanatorien
 - 66 dB(A) bei Büroräumen

5.8. Bauplanungsrechtliche Festsetzungen

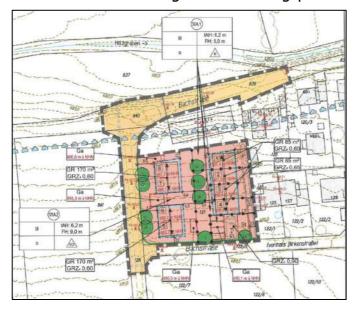

Umgebende Bebauungspläne gemäß BayernAtlas, Bebauungspläne im Internet



Zu Nr.1: Auszug zum Bebauungsplan Nr. 25 "Bachstraße " /23/



Zu Nr. 2: Auszüge zum Bebauungsplan Nr. 33 "Birkenstraße "/24/



1. Änderung nach /24/

Zu Nr. 3: Planzeichnung zum Bebauungsplan Nr. 33 "Birkenstraße – 2. Änderung" /26/

Hinweis:

Wie die schalltechnische Untersuchung /25/ zur Aufstellung des Bebauungsplanes zeigte wurden durch die gewerblichen Nutzungen innerhalb der benachbarten Halle des Herrn Kiening, mit Betrieb einer Lagernutzung und einer Käserei zur maßgeblichen Tageszeit, der Immissionsrichtwert der TA Lärm von tagsüber 55 dB(A) noch um mindestens 22 dB(A) unterschritten. Eine Nachtnutzung ist durch die Nutzungseinheiten nicht gegeben. Eine Vorbelastung ist somit für die Kontingentierung des gegenständlichen Bebauungsplan Nr. 94 nicht zu betrachten.

6. Beurteilung

6.1. Allgemeines

Verkehrslärm:

Der Straßenverkehrslärm wird nach den Rechenregeln der RLS-19 /6/ bestimmt. Der Beurteilungspegel für Schienenwege ist nach Anlage 2 der 16. BImSchV /4/ zu berechnen. Der Verkehrslärm wird anhand der DIN 18005 /3/ bzw. der 16. BImSchV beurteilt. Als Indiz für das Vorliegen schädlicher Umwelteinwirkungen aus Verkehrslärm dienen die Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV). Für den Verkehrslärm sind die im Kapitel 7.1 (Schiene) und 7.2 (Straße) aufgeführten Ausgangsdaten berücksichtigt.

Emissionskontingentierung nach 45691:2016-12:

Bei der Bestimmung von Emissionskontingenten für gewerblich genutzte Flächen, sind bestimmte Ausgangssituationen, sowie das Maß von bestehenden Vorbelastungen an den relevanten Immissionsorten, die zur Bewertung heranzuziehen sind, mit entscheidend. Das heißt, dass hinzukommende Gewerbebetriebe oder Gewerbeflächen, in Abhängigkeit von der Vorbelastung nur noch so viel zum Beurteilungspegel beitragen dürfen, dass in der Summe keine Immissionsrichtwertüberschreitungen nach TA Lärm /7/ eintreten. Im vorliegenden Fall sind keine entsprechenden Vorbelastungen nach den Ausführungen im Kapitel 8.1.1 zu beachten.

6.1.1. Berechnungssoftware

Unter Verwendung des EDV-Programms SoundPLAN 9.1 /21/ wird für die Verkehrslärmberechnung ein digitales Geländemodell für die Schallausbreitung erzeugt (s. Kapitel 3.1). Die Straße und die Schiene werden in das Geländemodelle mittels SoundPLAN 9.1 /21/ eingerechnet.

Die Berechnungen zu den möglichen Emissionskontingenten für die gewerblich genutzten Flächen innerhalb des Bebauungsplanes (GE- und MI-Flächen), erfolgen nach der DIN 45691:2006-12, Geräuschkontingentierung, vom Dezember 2006 /19/ und somit ohne Geländemodell. Bei der Berechnung ist die Immissionsorthöhe gleich der Emissionshöhe und wird hier mit 0 Meter berücksichtigt.

6.1.2. Grundsätzliche Aussagen über die Mess- und Prognoseunsicherheit

Unsere Konformitätsaussagen im Immissionsrichtwertbereich werden ohne Berücksichtigung der Mess- bzw. Prognoseunsicherheit getroffen.

Messunsicherheit

Die Messunsicherheit ist von der Güte der verwendeten Prüfmittel und insbesondere von der Durchführung vor Ort abhängig. Zur Minimierung von Fehlerquellen werden:

- ausschließlich Schallpegelmesser der Genauigkeitsklasse 1 nach DIN EN 60651, DIN EN 60804 und DIN 45657 mit einer Toleranz von ± 0,7 dB verwendet. Dies garantieren auch die entsprechenden Eichscheine.
 - Bei (Abnahme-) Messungen nach dem Bundesimmissionsschutzgesetz werden grundsätzlich nur geeichte Schallpegelmesser eingesetzt.
 - Mit Verweis auf DIN 45645-1, Ziffer 8 kann im Normalfall bei einem Vertrauensniveau von 0.8 mit einer Messunsicherheit bei Klasse 1 Geräten von \pm 1 dB gerechnet werden.
 - Die Pegelkonstanz der verwendeten Kalibratoren der Klasse 1 nach DIN EN 60942 kann mit \pm 0,1 dB angegeben werden.
- bei der Durchführung der Messungen vor Ort die geltenden vorgegebenen Standards (DIN-Normen, VDI etc.) eingehalten und insbesondere deren (Qualitäts-) Anforderungen eingehalten.

Die Gesamtmessunsicherheit liegt somit bei höchstens ± 1 dB.

Sofern geltende Standards wie z.B. die DIN EN ISO 3744 konkrete Verfahren zur Messunsicherheit vorgeben, werden diese angewandt.

Um den bestimmungsgemäßen Betrieb genauer zu verifizieren, werden im Vorfeld von schalltechnischen Messungen Genehmigungsbescheid(e) gesichtet und die Messplanung mit Betreiber und Genehmigungsbehörde abgestimmt. Damit, und in Verbindung mit der entsprechenden langjährigen Erfahrung der Messstellenleitung, können fundiertes Vorwissen und eine gute Übersicht über den Anlagenbetrieb gewonnen werden. Ebenso werden vor Messbeginn Informationen über die wesentlichen Bedingungen der Messsituation durch eine Betriebsbegehung mit den Firmenverantwortlichen eingeholt.

Um Ungereimtheiten oder dem Vorwurf der Parteilichkeit zu begegnen, werden im Einzelfall auch ohne Kenntnis bzw. Information des Betreibers am Messtag stichprobenartig zusätzliche Messungen vorgenommen oder der Anlagenbetrieb über die eigentliche Messaufgabe hinaus beobachtet.

Prognoseunsicherheit

Die Genauigkeit ist abhängig von u. a. den zugrunde gelegten Eingangsdaten (Schallleistungspegel, Vermessungsamtdaten etc.). Zur Minimierung von Fehlerquellen werden:

digitale Flurkarten (DFK) sowie ein digitales Geländemodell (DGM) über die (Bayerische) Vermessungsverwaltung bezogen zumindest aber vom Planer in digitaler Form (dxf-Format) angefordert.

- softwarebasierte Prognosemodelle erstellt. Hierzu wird auf den SoundPLAN-Manager der Braunstein + Berndt GmbH, 71522 Backnang zurückgegriffen. Eine Konformitätserklärung des Softwareentwicklers nach DIN 45687:2006-05 SoftwareErzeugnisse zur Berechnung der Geräuschimmissionen im Freien Qualitätsanforderungen und Prüfbestimmungen liegt vor.
- für die schalltechnischen Eingangsdaten Schallleistungspegel aus Literatur und Fachstudien und/oder Herstellerangaben und/oder eigenen Messungen herangezogen. Diese Daten sind hinreichend empirisch und/oder durch eine Vielzahl von Einzelereignissen verifiziert und/oder von renommierten Institutionen verfasst.

Für die Schallausbreitungsrechnung verweist die TA Lärm auf die Regelungen der DIN ISO 9613-2, die einem Verfahren der Genauigkeitsklasse 2 entspricht. In Tabelle 5 gibt die DIN ISO 9613-2 eine geschätzte Genauigkeit von höchstens \pm 3 dB an, was bei einem Vertrauensintervall von 95 % einer Standardabweichung von 1,5 dB entspricht.

Die Beurteilungspegel werden für den jeweils ungünstigsten Betriebszustand – Maximalauslastung, Voll- und Parallelbetrieb, maximale Einwirkzeit (24h) usw. – ermittelt. Eine gegebenenfalls Prognoseunsicherheit nach oben hin ist dadurch hinreichend kompensiert, so dass die Ergebnisse auf der sicheren Seite liegen.

7. Verkehrslärm

7.1. Ausgangsdaten Verkehrslärm – Schiene/Bahn

Gemäß den Zugverkehrszahlen der DB Netz AG /13/ befahren die Strecke 5502 im Jahr 2030 (Tag / Nacht) folgende Züge und Mengen.

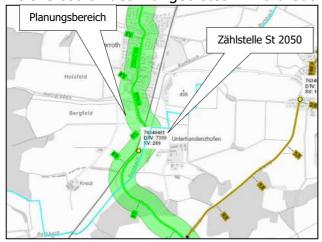

		and the second second second	māß aktuell		and the second second	the second secon	the first the second second		the state of the s							
Strecke	5502	Abschnit	t Niederroth	 Markt Ind 	dersdorf -	Arnbach,	km 16,0-	km 16,6,	Bereich Ir	ndersdorf						
Horizont	2030DT															
RiKz	1+2															
Zugart	Anz	zahl	v_max_Zug				Fahrz	reugkateg	orien gem	Schall03	im Zugve	rband				1
Traktion	Tag	Nacht	km/h	Fz_Kat	Anzahl	Fz_Kat	Anzahl	Fz_Kat	Anzahl	Fz_Kat	Anzahl	Fz_Kat	Anzahl	Fz_Kat	Anzahl	
GZ-E	0	0	100	7-Z5-A4	1	10-Z5	30	10-Z18	8			1 200		122		
GZ-E	2	2	100	7-Z5-A4	1	10-Z5	10									Grundlas
S	14	2	120	5-Z5-A12	1											
S	32	2	120	5-Z5-A12	2											1
Summe	48	6														1

Tabelle 5: Mengengerüst der Bahnlinie nach /13/

Zu- und Abschläge (Schwellen, Brücken, Bahnübergänge o.ä.) zum Emissionspegel erfolgen im Programm /21/ selbst. Die Berechnung wird mit der Fahrbahnart c1 als Standardfahrbahn und für den vorhandenen Bahnübergang mit "Bahnübergang" berücksichtigt. Der Bahnübergang ist in der grafischen Anlage entsprechend dargestellt Die Eingabedaten zur Berechnung des Schienenverkehrslärms sind in der Anlage 2.9 dargestellt.

7.2. Ausgangsdaten Verkehrslärm – Straße

Die Hauptverkehrsbelastung entsteht durch die Staatsstraße St 2050 (Münchner Straße), welche östlich des Plangebietes in Nord-Süd-Richtung verläuft. Die Verkehrsdaten erge-

ben sich aus dem Verkehrsmengen Atlas Bayern /11/. Als Grundlage dient hier die Zählstelle 76349401 mit einer Verkehrsstärke von DTV = 7.339 Kfz/24h.

Nach der RLS-19 /6/ wird die Stärke der Schallemission einer Straße, (beschrieben durch den längenbezogenen Schallleistungspegel Lw) aus der Verkehrsstärke M, dem Anteil an Fahrzeugen der Fahrzeuggruppen Lkw1 und Lkw2 p1 und p2, den

Geschwindigkeiten v der Fahrzeuggruppen und dem Typ der Straßendeckschicht berechnet. Hinzu kommen gegebenenfalls Zuschläge für die Längsneigung der Straße, für Mehrfachreflexionen und für die Störwirkung von lichtsignalgesteuerten Knotenpunkten oder Kreisverkehrsplätzen. Die Ausgangsdatenbasis für die maßgebliche Straße ist nachfolgend aufgeführt. Für die Berechnungen "Prognose 2040" wurde ein Prognosefaktor von 1,2 berücksichtigt.

Tabelle 6: Verkehrsdaten

Straße				Zählo	laten					
Zählstelle	М (К	fz/h)	p1 ((%)	p2	(%)	pKrad	d (%)	Von	bis
	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
			V	erkehrs	daten 2	2023 zu	Berech	nung		
St 2050 76349401	508	64	2,4	3,2	0,8	1,4	3,0	1,9	KRV in Markt Indersdorf	Einm. St2047 bei Pullhausen
			Verk	ehrsdate	n zu Ber	echnung	"Progno	ose 2040		
St 2050 76349401	609,6	76,8	2,4	3,2	0,8	1,4	3,0	1,9	KRV in Markt Indersdorf	Einm. St2047 bei Pullhausen

Legende:

M: Stündliche Verkehrsstärke der Quelllinie in Kfz/h

pKrad: Anteil an Fahrzeugen der Fahrzeuggruppe pKrad (Motorräder) in %, die emissionsmäßig wie Lkw2 einzustufen sind.

Anmerkung nach RLS-19: Zu Gunsten der Lärmbetroffenen werden Motorräder (Kräder nach TLS 2012) emissionsmäßig wie Lkw2 eingestuft.

* Nachtfahrverbot Lkw und Krad auf der Strecke (Beachte nachfolgenden Hinweis)

Die Vergabe einer Knotenpunktkorrektur $D_{K,KT}$ nach Nr. 3.3.7 der RLS-19 /6/ ist im vorliegenden Fall nicht zu berücksichtigen.

Der Straßendeckschichttyp für den maßgeblichen Straßenabschnitt ist nach /12/ mit Asphaltbeton angegeben. Die Zuschläge werden innerhalb des EDV-Programms entsprechend der Tabelle 4a der RLS-19 /6/ vergeben (s. Anlage 2.10).

p1: Anteil an Fahrzeugen der Fahrzeuggruppe Lkw1 (Lastkraftwagen ohne Anhänger mit einer zulässigen Gesamtmasse von bis zu 3,5 t) in % p2: Anteil an Fahrzeugen der Fahrzeuggruppe Lkw2 (Lastkraftwagen mit Anhänger bzw. Sattelkraftfahrzeuge (Zugmaschine mit Auflieger) mit

einer zulässigen Gesamtmasse über 3,5 t)

Die Geschwindigkeiten im berücksichtigten Straßenverlauf sind für die Berechnung teilweise "außerorts" mit 100/80 h für Pkw/Lkw, teilweise beschränkt auf 70 km/h und teilweise mit "innerorts" und somit 50 km/h für Pkw/Lkw anzusetzen. Eine Übersicht hierzu ist aus der Anlage 1.1 zu entnehmen. Die Grundlage zur Platzierung des Ortschildes für die St 2050 ist in der Anlage 7.1 wiedergegeben.

Zuschläge für Steigungen ermittelt die Berechnungssoftware anhand des hinterlegten digitalen Geländemodells automatisch. Die Eingabedaten der Verkehrslärmberechnung "Straße" sind der Anlage 2.10 zu entnehmen.

8. Geräuschkontingentierung

8.1. Festlegen der Gesamtimmissionsrichtwerte

Gemäß der DIN 45691:2006-12 /19/ sind zunächst für alle schutzbedürftigen Gebiete in der Umgebung des Bebauungsplangebietes die Gesamtimmissionswerte $L_{\rm GI}$ festzulegen, die in der Regel nicht höher sein dürfen als die Immissionsrichtwerte nach TA Lärm /7/ bzw. die schalltechnischen Orientierungswerte nach Beiblatt 1 zur DIN 18005 /3/.

8.1.1. Vorbelastung und folgende Planwerte

Eine maßgebliche Vorbelastung ist an den außerhalb des Plangebietes zu berücksichtigenden Immissionsorten IO1 bis IO7 nicht gegeben. Somit können für die Kontingentierung der Bebauungsplanflächen die unverminderten Planwerte nach der DIN 45691:2006-12 /19/ berücksichtigt werden. Die Planwerte sind dabei den Immissionsrichtwerten der TA Lärm /7/ für die entsprechenden Gebiete gleichgesetzt. Durch die beschriebene Ausgangssituation ergeben sich die aufgeführten Planwerte an den genannten Immissionsorten, die im nachfolgenden Kapitel 8.1.2 in den Tabellen 7 und 8 ersichtlich sind.

8.1.2. Bestimmung der Emissionskontingente Lek

Die Berechnung der zulässigen Emissionskontingente für die Flächen innerhalb des geplanten Bebauungsplanes (Flächen TF-GE 1 bis TF-GE 4 und TF-MI 1 bis TF-MI 6) erfolgt mit EDV-Unterstützung durch das Programm SoundPLAN /21/, sowie der Richtlinie DIN 45691:2006-12 /19/ unter ausschließlicher Ansetzung der geometrischen Ausbreitungsdämpfung (Adiv). Die Kontingentflächen des Bebauungsplangebiets wurden für die schalltechnischen Berechnungen mit Emissionskontingenten L_{EK} in einer Höhe von 0,0 Meter über Geländeoberkante belegt, wobei die Höhe der Immissionsorte nach /19/ der Emissionshöhe entspricht.

In den nachfolgenden Tabellen sind die Gesamtimmissionsrichtwerte $L_{\rm GI}$ und die Planwerte $L_{\rm PI}$ aufgeführt. Die Planwerte können, da keine maßgebliche Vorbelastung gegeben ist, durch die Emissionskontingente der geplanten Teilflächen hier ausgeschöpft werden. In den Tabellen ist weiter noch das mögliche Zusatzkontingent $L_{\rm EK,zus}$ (Zeile "Unterschreitung") an den relevanten Immissionsorten aufgezeigt, um die Planwerte zu erhalten. Dabei ist zu beachten, dass die Zusatzkontingente auf ganze Dezibel abzurunden sind.

Tabelle 7: Kontingentierung für den Tageszeitraum

Immissionsort			101 (WA)	102 (WA)	103 (WA)	104 (WR)	105 (WR)	106 (WA)	107 (WA)
Gesamtimmissi	onswert L(GI)	and the same of th	55,0	55,0	55,0	50,0	50,0	55,0	55,0
Geräuschvorbe	elastung L(vor)		0,0	0,0	0,0	0,0	0,0	0,0	0,0
Planwert L(PI)			55,0	55,0	55,0	50,0	50,0	55,0	55,0
						Teilpegel			
Teilfläche	Größe [m²]	L(EK)	101 (WA)	102 (WA)	103 (WA)	104 (WR)	105 (WR)	106 (WA)	107 (WA)
TF-GE 1	2142,9	58	33,6	33,6	36,6	38,3	40,2	41,1	42,0
TF-GE 2	3126,8	58	38,3	38,0	41,7	42,9	41,7	41,1	40.5
TF-GE 3	3422,7	64	41,7	41,3	43,6	44,5	44,7	44,9	45,2
TF-GE 4	1331,0	59	34,6	33,9	36,0	36,6	35,5	35,2	35,0
TF-MI1	2421,7	50	27,6	27,9	32,3	35,1	37,0	37,4	37,7
TF-MI 2	1630,4	50	30,4	30,8	39,2	40,0	32,9	30,9	29,2
TF-MI3	1549,3	55	38,8	37,0	38,6	36,8	32,7	31,5	30,6
TF-MI 4	1048,9	57	35,4	34,6	38,0	37,9	34,3	33,3	32,3
TF-MI 5	1573,4	60	37,7	36,7	38,4	38,5	36,7	36,2	35,7
TF-MI 6	1962,2	61	41,8	40,1	40,8	40,2	37,8	37,1	36,5
	Immissionskonting	gent L(IK)	47,8	46,9	49,5	50,0	49,1	49,0	49,1
*	Unters	chreitung	7,2	8,1	5,5	0,0	0,9	6,0	5,9

Tabelle 8: Kontingentierung für den Nachtzeitraum

Immissionsort			I01 (WA)	102 (WA)	103 (WA)	104 (WR)	105 (WR)	106 (WA)	107 (WA)
			50-00-00 Kind on Apr		ACCOUNT OF THE PARTY OF THE PAR	STATE OF STA	200000000000000000000000000000000000000	I STANDARD BANKS	and a Kontak
Gesamtimmissi			40,0	40,0	40,0	35,0	35,0	40,0	40,0
	elastung L(vor)		0,0	0,0	0,0	0,0	0,0	0,0	0,0
Planwert L(PI)			40,0	40,0	40,0	35,0	35,0	40,0	40,0
						Teilpegel			
Teilfläche	Größe [m²]	L(EK)	101 (WA)	102 (WA)	103 (WA)	104 (WR)	105 (WR)	106 (WA)	107 (WA)
TF-GE 1	2142,9	43	18,6	18,6	21,6	23,3	25,2	26,1	27,0
TF-GE 2	3126,8	43	23,3	23,0	26,7	27,9	26,7	26,1	25,5
TF-GE 3	3422,7	50	27,7	27,3	29,6	30,5	30,7	30,9	31,2
TF-GE 4	1331,0	44	19,6	18,9	21,0	21,6	20,5	20,2	20,0
TF-MI 1	2421,7	30	7,6	7,9	12,3	15,1	17,0	17,4	17,7
TF-MI 2	1630,4	30	10,4	10,8	19,2	20,0	12,9	10,9	9,2
TF-MI3	1549,3	40	23,8	22,0	23,6	21,8	17,7	16,5	15,6
TF-MI 4	1048,9	42	20,4	19,6	23,0	22,9	19,3	18,3	17,3
TF-MI 5	1573,4	45	22,7	21,7	23,4	23,5	21,7	21,2	20,7
TF-MI 6	1962,2	46	26,8	25,1	25,8	25,2	22,8	22,1	21,5
	Immissionskonting	gent L(IK)	33,0	32,1	34,4	35,0	34,2	34,2	34,3
	Unters	chreitung	7,0	7,9	5,6	0,0	0,8	5,8	5,7

Die Entfernungsminderung A_{div} berechnet sich nach Tabelle 7 und Tabelle 8 aus der Differenz von L_{EK} + 10 log (Flächengröße der Teilfläche) und dem Teilpegel am jeweiligen Immissionsort.

Tabelle 9: Entfernungsminderung Adiv

Entfernungsm	inderung A(div)							
Teilfläche	Größe [m²]	101 (WA)	102 (WA)	103 (WA)	104 (WR)	105 (WR)	106 (WA)	107 (WA)
TF-GE 1	2142,9	57,7	57,7	54,7	53,1	51,1	50,2	49,3
TF-GE 2	3126,8	54,6	54,9	51,3	50,0	51,3	51,8	52,4
TF-GE 3	3422,7	57,7	58,0	55,8	54,9	54,7	54,4	54,1
TF-GE 4	1331,0	55,7	56,4	54,2	53,7	54,7	55,0	55,3
TF-MI 1	2421,7	56,2	56,0	51,6	48,7	46,8	46,4	46,1
TF-MI 2	1630,4	51,7	51,3	42,9	42,2	49,3	51,2	52,9
TF-MI 3	1549,3	48,1	49,9	48,3	50,1	54,2	55,4	56,3
TF-MI 4	1048,9	51,8	52,6	49,2	49,3	52,9	53,9	54,9
TF-MI 5	1573,4	54,3	55,3	53,6	53,5	55,3	55,8	56,2
TF-MI 6	1962,2	52,1	53,8	53,1	53,7	56,1	56,8	57,4

8.1.3. Zusatzkontingente für einzelne Richtungssektoren

Wie aus den Tabellen ersichtlich, ergeben sich noch deutliche Unterschreitungen der Planwerte an den Immissionsorten IO1 und IO2 sowie IO6 und IO7, so dass wir hier entsprechende Zusatzkontingente vergeben werden. Dabei ist zu beachten, dass die Zusatzkontingente auf ganze Dezibel abzurunden sind.

Zur Definition der vorgeschlagenen Richtungssektoren dient dabei der Bezugspunkt (Referenzpunkt) mit den entsprechenden Koordinaten (hier: UTM-32 mit Rechtswert (x) und Hochwert (Y)). Die Richtungssektoren gelten für die aufgeführten Öffnungswinkel mit den jeweiligen Zusatzkontingenten $L_{EK,zus,T}$ und $L_{EK,zus,N}$. Die letztlich realisierbaren Zusatzkontingente mit Sektor und Winkel, sowie der Referenzpunkt sind in den nachstehenden Tabellen aufgeführt.

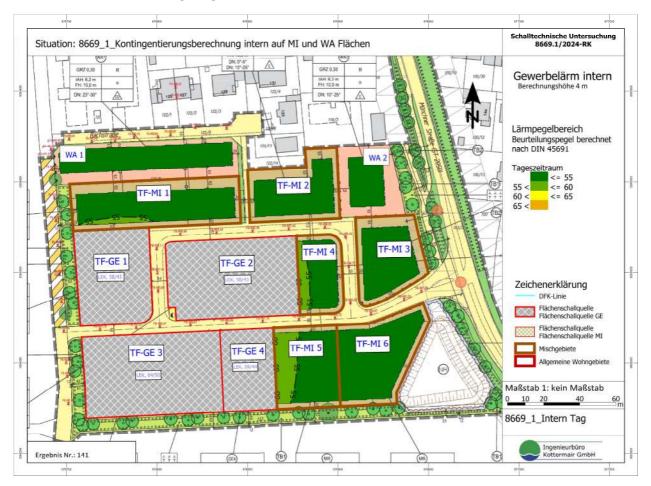
Tabelle 9: Sektoren mit Zusatzkontingente und Bezugspunkt im UTM-32-System

eferenzpu	IKI			
Х		Υ		
76862,00		5354344,00		
ektoren mit Sektor	Zusatzkoni	tingenten	EK,zus,T	EK,zus,N
A	298,0	324,0	5	5
В	324,0	348,0	0	(
	348,0	13,0	0	(
С				
C D	13,0	62,0	5	5

Eine grafische Darstellung der Eingabedaten und der Ergebnisse der Kontingentberechnung mit den entsprechenden Teilflächen zeigt die Anlage 5.1. Die zugehörigen Koordinaten im UTM-32-System sind der Anlage 5.2 zu entnehmen.

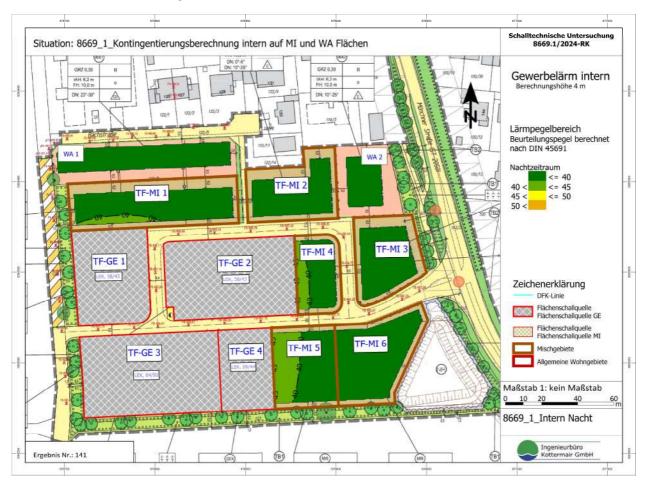
Anmerkung:

Aufgrund der internen allgemeinen Wohngebietsparzellen, die den Gebieten außerhalb zum Teil vorgelagert sind, können die möglichen Richtungssektoren zu den Immissionsorten außerhalb des Plangebietes praktisch nicht ausgeschöpft werden. Für die Immissionsorte innerhalb des Gebietes (Bereiche GE, MI und WA) werden auch wegen der zu berücksichtigenden Summenwirkung jeweils reduzierte Immissionsrichtwerte bei einem entsprechenden Genehmigungsantrag für eine "Anlage" festgelegt werden müssen. Dadurch kann eine Anlage in ihren Emissionen möglicherweise je nach interner Lage entsprechend schneller begrenzt werden.

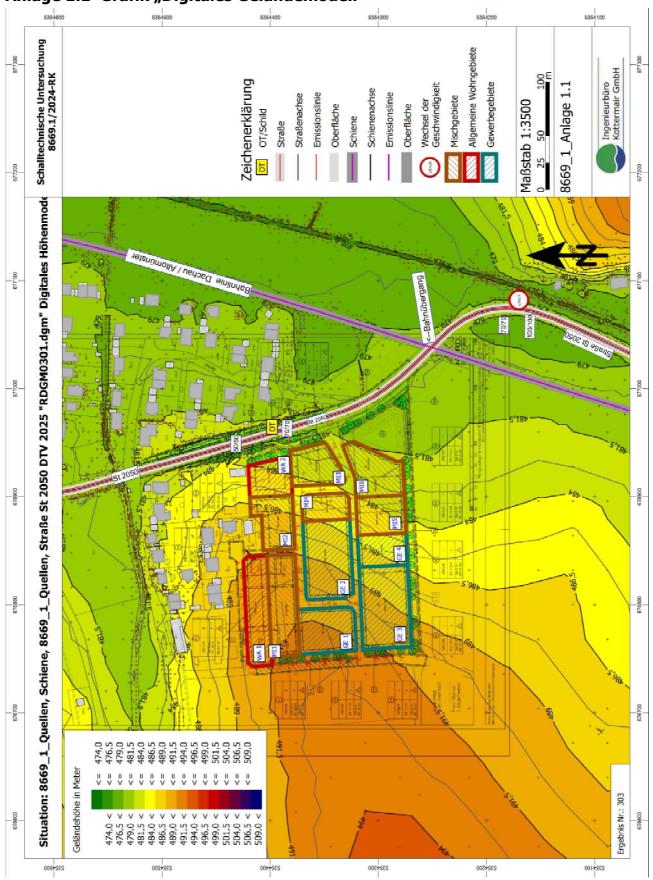

Hinweis zu den flächenbezogenen Schallleistungspegeln:

Bei den vorgeschlagenen, festzusetzenden Emissionskontingenten handelt es sich de facto um immissionswirksame flächenbezogene Schallleistungspegel. Das bedeutet, dass ein ansiedelnder Betrieb grundsätzlich auch höhere Schallemissionen erzeugen darf – entscheidend ist jedoch, dass an den maßgeblichen Immissionsorten keine höheren Geräuschimmissionen ankommen als den festgesetzten Emissionskontingenten entsprechen. Sofern durch geeignete Maßnahmen wie Schallabschirmungen (z. B. Schallschutzwände oder Gebäude) oder durch gezielte Schallabstrahlung in unbebaute oder weniger schutzbedürftige Bereiche die einwirkende Schallenergie ausreichend reduziert wird, können die zulässigen Immissionswerte eingehalten werden. In diesem Fall gelten die immissionsschutzrechtlichen Anforderungen des Bebauungsplans als erfüllt.

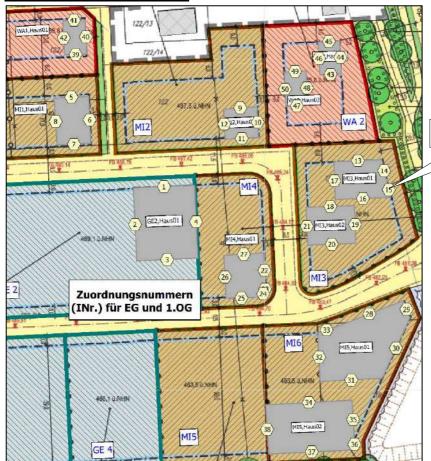
9. Einwirkender Gewerbelärm innerhalb des Planungsgebietes


Für die Parzellen innerhalb des Plangebietes wurde eine weitere Berechnung durchgeführt. Dabei werden die gewerblichen Flächen mit ihren Emissionskontingenten veranschlagt und somit der Lärmeintrag auf die umgebenden Mischgebietsflächen bzw. auf die allgemeinen Wohngebietsflächen berechnet.

Grafik für die Bewertung Tageszeit


Wie aus der Grafik für die Tageszeit ersichtlich, sind innerhalb der Mischgebietsflächen (MI) sowie innerhalb der allgemeinen Wohngebietsflächen (WA) keinerlei Konflikte gegeben. Die zulässigen Immissionsrichtwerte /7/ bzw. Orientierungswerte /3/ werden jeweils eingehalten bzw. unterschritten.

Grafik für die Bewertung Nachtzeit

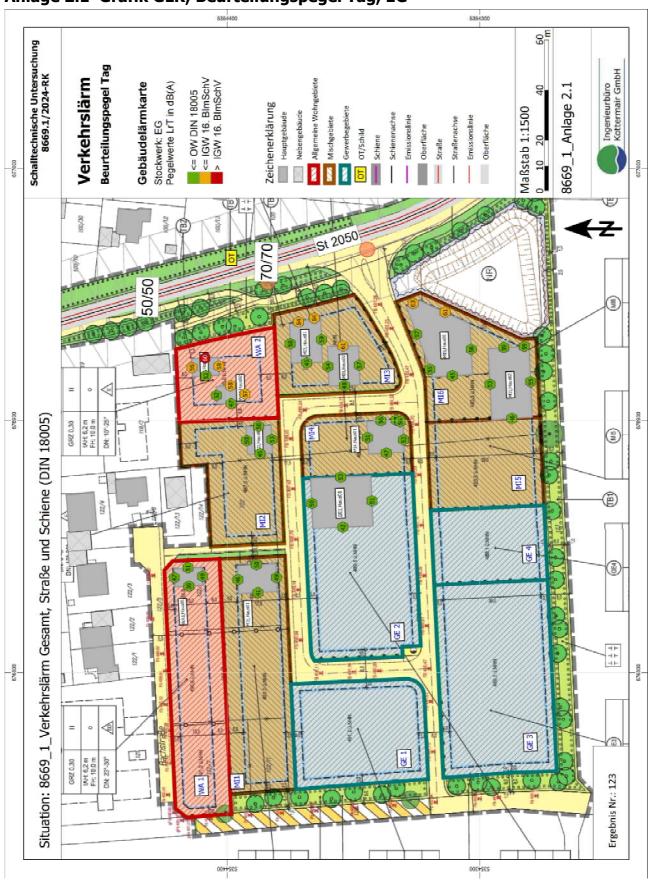

Wie aus der Grafik für die Nachtzeit ersichtlich, sind innerhalb der Mischgebietsflächen (MI) sowie innerhalb der allgemeinen Wohngebietsflächen (WA) keinerlei Konflikte gegeben. Die zulässigen Immissionsrichtwerte /7/ bzw. Orientierungswerte /3/ werden jeweils eingehalten bzw. unterschritten.

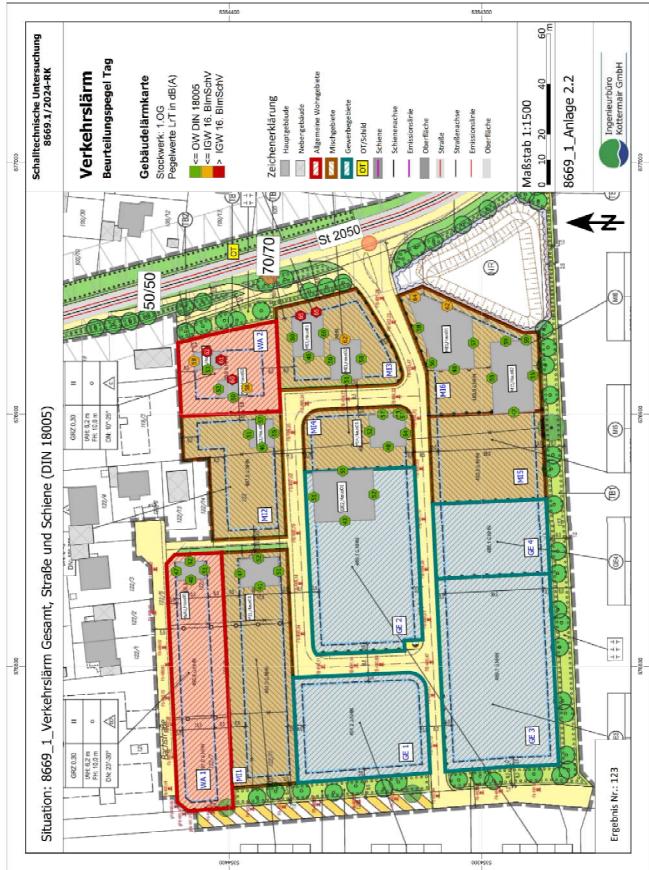
Anlage 1 Geländemodell und Übersicht zur Situation vor Ort Anlage 1.1 Grafik "Digitales Geländemodell"

Anlage 1.2 INr. Zuordnungsnummern für Tabellendarstellungen der Anlagen

INr. Nummern 1 bis 50

Die Gebäudenummerierung entspricht der Gebietsparzelle und der Gebäudenummer in den tabellarischen Anlagen.


Beispiel MI3 Haus 01

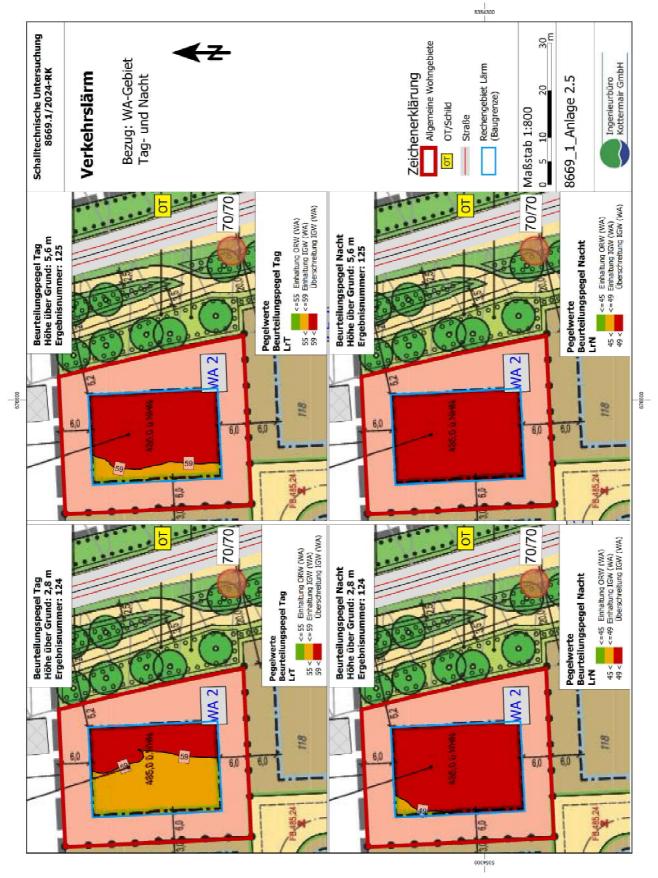

ัศน์3: Gebietsparzelle Gebäude: Haus 01

INr.: 15

Zuordnungsnummern für EG und 1.OG (alle Gebäude)

Anlage 2 Verkehrslärm gesamt, "Straße und Schiene/Bahn" Anlage 2.1 Grafik GLK; Beurteilungspegel Tag, EG

Anlage 2.2 Grafik GLK; Beurteilungspegel Tag, 1.0G


5354300 8[□] Schalltechnische Untersuchung 8669.1/2024-RK Beurteilungspegel Nacht Ingenieurbüro Kottermair GmbH <= OW DIN 18005 <= IGW 16. BImSchV > IGW 16. BImSchV Verkehrslärm Allgemeine Wohngebiete Gebäudelärmkarte Stockwerk: EG Pegelwerte LrN in dB(A) 8669_1_Anlage 2.3 Zeichenerklärung Maßstab 1:1500 Nebengebäude Hauptgebäude Mischgebiete Straßenachse Oberfläche OT/Schild Schlene (9) (1) MI6 DN: 10".25" Situation: 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005) tAlt: 6,2 m FH: 10,8 m (1) MES. 122/4 (1) + + + 1227 SE 3 DAH: 6,2 m FH: 10,0 m DN: 23*-30* GRZ 0,30 Ergebnis Nr.: 123 0064969

Anlage 2.3 Grafik GLK, Beurteilungspegel Nacht, EG

5354300 8[□] Schalltechnische Untersuchung 8669.1/2024-RK Beurteilungspegel Nacht Ingenieurbüro Kottermair GmbH <= OW DIN 18005 <= IGW 16. BImSchV > IGW 16. BImSchV Verkehrslärm Allgemeine Wohngebiete Gebäudelärmkarte Stockwerk: 1.0G Pegelwerte LrN in dB(A) 8669_1_Anlage 2.4 Zeichenerklärung Maßstab 1:1500 Nebengebäude Hauptgebäude Mischgebiete Oberfläche OT/Schild Schlene (1) MI6 DN: 10".25" Situation: 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005) tAlt: 6,2 m FH: 10,8 m (1) MES. 122/4 (1) + + + 1227 SE 3 DAH: 6,2 m FH: 10,0 m DN: 23*-30* GRZ 0,30 Ergebnis Nr.: 123 0064969

Anlage 2.4 Grafik GLK, Beurteilungspegel Nacht, 1.0G

Anlage 2.5 Grafik RLK, WA-Gebiet, Verkehr gesamt, Tag u. Nacht, EG u. 1.0G

Schalltechnische Untersuchung 8669.1/2024-RK 8_□ Rechengebiet Lärm Zeichenerklärung Ingenieurbüro Kottermair GmbH Bezug: MI-Gebiet Verkehrslärm 8669_1_Anlage 2.6 Tag- und Nacht Mischgebiete (Baugrenze) 8 Maßstab 1:1750 Straße 20 0 10 £ 88 8 8 8 8 <=64 Einhaltung ORW (MI)
<=64 Einhaltung IGW (MI)
Überschreitung IGW (MI) <=50 Einhaltung ORW (MI)
<=54 Einhaltung IGW (MI)
Überschreitung IGW (MI) Beurteilungspegel Nacht Höhe über Grund: 5,6 m Ergebnisnummer: 127 Höhe über Grund: 5,6 m Ergebnisnummer: 127 Pegelwerte Beurteilungspegel Nacht Pegelwerte Beurteilungspegel Tag LrT Beurteilungspegel Tag St 2050 (5) (9) 8.2 8 2 MI6 677300 A NA A NA <=60 Einhaltung ORW (MI) <=64 Einhaltung IGW (MI) Überschreitung IGW (MI) <=50 Enhaltung ORW (NI)
<=54 Enhaltung IGW (MI)
Überschreitung IGW (MI) 000 000 Beurteilungspegel Nacht Höhe über Grund: 2,8 m Ergebnisnummer: 126 Beurteilungspegel Tag Höhe über Grund: 2,8 m Ergebnisnummer: 126 Pegelwerte Beurteilungspegel Nacht LrN Pegelwerte Beurteilungspegel Tag LrT St 2050 St 2050 (9) 82 ^ ^ 8 12 ^ ^ 00211 877200 MIG 009#969 0011568 0064868

Anlage 2.6 Grafik RLK, MI-Gebiet, Verkehr gesamt, Tag u. Nacht, EG u. 1.0G

Anlage 2.7 Beurteilungspegel Einzelpunkte, Straße und Schiene

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

Lecende

Jik
Inmischrorot
Inmischrorot
Reschoss
Geschoss
HR
Himmelsinkung
A m Accordinate
Y m

 8659.1/2024-RK
 Ingenie urbiliro Kottermair GmbH
 Seite 1 von 4

 Rechenlauf Nr. 123
 Gewerbepark 4,85250 Altoniünster
 3004.80230:26

 SoundPLAN 9.1
 3004.80230:26
 3004.80230:26

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

INc	Immesionsort	Geschoss	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
1	GE2,Haus01	EG 1.OG	N	GE	676867,1	5354366,6	487,4 487,4	490,0 492,8	65 65	50 51		55 55	41 42		
2	GE2,Haus01	EG 1.OG	W	GE	676857,6	5354354,2	487,8 487,8	490,0 492,8	65 65	42 43	-	55 55	33 34	(A)	
3	GE2,Hous01	EG 1.OG	S	GE	676963,1	5354342,7	496,8 486,8	490,0 492,8	65 65	51 52		55 55	42 44		
4	GE2,Haus01	EG 1.0G	О	GE	676877,6	5354355,1	485,5 485,5	490,0 492,8	65 65	53 55	=	55 55	45 47	_	
5	MI1,Haus01	EG 1.OG	N	ME	676836,8	5354395,8	489,5 489,5	492,4 495,2	60 60	46 47		50 50	37 39	=	
6	MI1,Haus01	EG 1.0G	а	MI	676842,8	5354388,5	489,4 489,4	492,4 495,2	60 60	50 52	22	50 50	42 44		
7	MI1,Haus01	EG 1.0G	5	ML	676837,6	5354380,5	489,7 489,7	492,4 495,2	60 60	49 51	-	50 50	41 43	=	
8	M11,Haus01	EG 1.0G	W	ML	676831,6	5354387,9	489,8 489,8	492,4 495,2	60 60	41 41	-	.50 50	32 33	3223 3223	
9	M12,Haus01	EG 1.DG	N	ME	676892,0	5354892,3	486,2 486,2	488,9 491,7	60 60	50 51	=	50 50	41 42	Ξ	
10	M12,Haus01	EG 1.DG	0	ME	676897,7	5354387,6	485,7 485,7	488,9 491,7	60 60	56 57		50 50	47 48)	
11	M12,Haus01	EG 1.0G	S	MI	676892,5	5354382,4	485,9 485,9	488,9 491,7	60 60	53 55		50 50	44 46	_	
12	M12,Haus01	EG 1.OG	W	MI	676886,8	5354387,0	486,4 486,4	488,9 491,7	60 60	45 46	-	50 50	36 38	_	
13	MI3,Haus01	EG 1.OG	N	MI	676930,5	5354375,1	483,2 483,2	485,8 488,6	60	58 60	-	50 50	49 51		
14	M13,Haus01	EG 1.OG	a	MI	676939,1	5354371,8	482,7 482,7	485,8 488,6	60 60	64 65	4 5	50 50	55 56	5	
15	M13,Haus01	EG 1.OG	О	MI	676940,6	5354365,6	482,4 482,4	485,8 488,6	60 60	5 4 55	4 5	50 50	55 56	5 6	
16	M13,Haus01	EG 1.DG	5	ME	676932,1	5354362,7	482,9 482,9	485,8 488,6	60 60	59 60	-	50 50	51 52	1 2	
17	M13,Haus01	EG 1.OG	W	MI	676922,8	5354368,5	483,5 483,6	485,8 488,6	60 60	45 48	=	50 50	36 39		
18	M13,Haus02	EG 1.0G	N.	ME	676921,5	5354360,1	483,5 483.5	485,3 489.1	60 60	54 56		50 50	46 47		

8669.1/2024-RK Ingenieurbüro Kottermeir GmbH Seite 2 von 4
Rechenlauf Nr. 123 Gewerbepark 4,85250 Altomünster 30.04.20230:20

SoundPLAN 9.1

Anlage 2.7 Beurteilungspegel Einzelpunkte, Straße und Schiene

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

INc	Immesionsort	Geschoos	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
19	M13,Haus02	EG 1.OG	0	ME	676929,6	5354354,2	483,0 483,0	486,3 489,1	60 60	61 62	1 2	50 50	52 53	2 3	
20	M13,Haus02	EG 1.OG	S	MI	676921 _r 9	5354347,7	483,5 483,5	496,3 489,1	60 60	57 58		50 50	48 49	***	
21	M13,Hous02	EG 1.OG	W	MI	676913,8	5354353,6	483,9 483,9	496,3 499,1	60 60	48 51		50 50	39 42	-	
2	M14,Heus01	EG 1.OG	О	MI	676899,9	5354339,2	404,6 484,6	487,4 490,2	60 60	56 57	=	50 50	48 49		
23	M14,Haus01	EG 1.OG	0	MI	676900,2	5354333,1	484,4 484,4	487,4 490,2	60 60	57 58		50 50	48 49		
24	M14,Haus01	EG 1.0G	50	MI	676899,5	5354331,5	484,4 484,4	487,4 490,2	60 60	56 57	I	50 50	48 49		
25	M14,Haus01	EG 1.DG	5	MI	676892,4	5354830,2	484,7 484,7	487,4 490,2	60 60	53 54		50 50	44 46	=	
6	M14,Haus01	EG 1.0G	W	MI	676887,0	5354337,0	485,3 485,3	487,4 490,2	60 60	47 48	_	50 50	38 40		
7	M14,Haus01	EG 1.DG	N	MI	676893,2	5354344,5	485,1 485,1	487,4 490,2	60 60	51 52		50 50	42 44		
8	M15,Haus01	EG 1.DG	N	ME	676934,2	5354325,0	482,2 482,2	484,9 487,7	60 60	57 58	-	50 50	48 49)1 1	
29	M15,Haus01	EG 1.OG	О	MI	676946,4	5354326,4	481,6 481,6	484,9 487,7	60 60	63 64	3 4	50 50	54 55	4 5	
0	M15,Haus01	EG 1.OG	90	MI	676942,9	5354313,7	481,6 481,6	484,9 487,7	60 60	51 52	1 2	50 50	52 53	2 3	
1	M15,Haus01	EG 1.OG	S	MI	676928,3	5354303,3	482,0 482,0	484,9 487,7	60 60	56 57	-	50 50	48 49	=	
2	MI5,Haus01	EG 1.OG	W	MI	676917,8	5354310,8	482,6 482,6	484,9 487,7	60	45 48	7	50 50	36 39		
3	MI5,Haus01	EG 1.OG	N	IM	676920,3	5354319,7	482,7 482,7	484,9 487,7	60	55 56	Ξ	50 50	46 47		
14	M15,Haus02	EG 1.DG	N	MI	676914,4	5354296,0	482,5 482,5	485,2 488,0	60 60	53 55		50 50	45 46	-	
5	M15,Haus02	EG 1.OG	0	MI	676928,9	5354290,4	481,9 481,9	485,2 488,0	60 60	59 59	-	50 50	50 51	1	
6	M15,Haus02	EG 1.0G	0	ME	676929,4	5354282,3	481,9 481.9	485,2 488.0	60 60	59 59		50 50	51 51	1	

 8659.1/2014-RK
 Ingenieurbürg Kottermair GmbH
 Seite 3 von 4

 Rechenlauf Nr. 123
 Gewerbepark 4, 85250 Alkomünster
 30.04.30/200/200/200

 SoundPLAN 9.1
 30.04.30/200/200
 30.04.30/200/200

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

INr	Immesionsort	Geschoos	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
37	M15,Haus02	EG	S	ME	676915,4	5354279,8	482,4	485,2	60	55		50	47		
		1.0G					482,4	488,0	60	55	122	50	48		
38	M15,Haus02	EG	W	MI	676900,8	5354287,2	483,0	485,2	60	46		50	37	1944	
	1.00	1.0G				- 27F-1	483,0	488,0	60	47		50	38		
39	WA1,Haus01	EG	S	\VA	676838,2	5354109,8	469,2	491,9	55	49		45	41		
		1.0G		710000			489,2	494,7	55	51		45	43		
40	WA1,Haus01	EG	0	WA	676841,5	5354415,6	489,2	491,9	55	51	(2000)	45	43	-	
		1.00	102				489,2	494,7	55	52		45	44		
41	WA1,Haus01	EG	N	WA.	676837,6	5354421,0	489,0	491,9	55	47	-	45	36		
2001	2001001/00/00/00	1.0G	191001	99232	SAUSTANDERS E	1 STATE OF THE STA	489,0	494,7	55	47	***	45	39		
42	WA1,Haus01	EG	W	WA	676834,3	5354115,2	489,2	491,9	55	39	0.7750	45	30	555	
		1.0G					489,2	494,7	55	40		45	31	32027	
43	WAZ,Haus01	EG	5	WA	676921,5	5354403,3	484,3	487,2	55	59	4	45	51	6	
		1.05					484,3	490,0	55	51	5	45	52	7	
44	WA2,Haus01	EG	0	WA	676924,8	5354408,9	484,2	487,2	55	50	5	45	52	7	
10000	NAME OF STREET	1.05	(52))	-5500	SAME SALVE	500000000000000000000000000000000000000	484,2	490,0	55	52	7	45	53	8	
45	WA2,Haus01	EG	N	WA	676921,0	5354414,1	484,5	487,2	55	56	1	45	47	2	
		1.0G					484,5	490,0	55	58	3	45	48	3	
46	WA2,Haus01	EG	W	LVA.	676917,7	5354408,5	484,7	487,2	55	52		45	43		
- 9	25	1.DG					484,7	490,0	55	53	o s ee s s	45	44		
47	WA2,Haus02	EG	S	WA	676910,5	5354393,0	484,9	487,8	55	57	2	45	48	3	
	100-2010-000-000	1.0G	4114.0	(1,00)	50.70.000.000	100,000,000	484,9	490,6	55	58	3	45	50	5	
48	WA2,Haus02	EG	0	WA	676913,8	5354398,8	484,8	487,8	55	58	3	45	50	5	
		1.0G					484,8	490,6	55	50	5	45	51	6	
49	WA2,Hous02	EG	N	WA	676910,0	5354404,3	485,1	487,8	55	52		45	43		
	- 5%	1.0G					485,1	490,6	55	53	1000	45	44		
50	WA2,Haus02	EG	W	WA	676906,7	5354398,5	485,2	487,8	55	47	-	45	38		
		1.0G	24222	000		C - 7000 NOZOWAY	485,2	490,6	55	50		45	42	444	

 8669.1/2014-8.K
 Ingenie urbiliro Kottermair GmbH
 Seite 4 von 4

 Rechenlauf Nr. 123
 Gewerbepark 4,85250 Altomünster
 30.04.2012/01/2016

SoundPLAN 9.1

Anlage 2.8 Rechenlauf, Berechnung Straße und Schiene

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Rechenlauf-Info 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

```
Project Hule
Project Hule
Project Hule
Project Hule
SSS3 1/3/2/34C
Roman Kool
Auftragester
Roman Kool
Roman Roman
```

 Septimore
 Ingenieurbüro Kottemair GmbH
 Seite 1 von 2

 Rechenkof Nr. 123
 Geverbepart 4, 65250 Altomünster

 SoundPLAN 9,1
 SoundPLAN 9,1

```
Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf
Rechenlauf-Info
8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)
```

```
Highway Beachever left
En is it considered for any and ELS-19
Rechtwer left
En is it considered any and ELS-19
Rechtwer left
En is it considered any and ELS-19
Rechtwer left
Rechtwer l
```

8669, 1/2024, 8K Ingenieurbüro Kottemair GmbH Seite 2 von 2 Gewerbepark 4, 85250 Altomünster state (seit and seite (seite and seite (seite and seite (seite and seite (seite and seite and seite (seite and seite and

Seite 57 von 73

Anlage 2.9 Eingabedaten / Ausgangsdaten Schiene

	cke 5502)	Gleis:	Rid	ntung:				Abs	chnitt: 1		Km: 0+	000	
	Zugart		Anzah	l Züge	Geschwin-	Länge			Emis	sionspeg	el L'w [di	B(A)]	
	Name		Tag	Nacht	digkeit	je Zug	Max		Tag			Nacht	
					km/h	m		0 m	4 m	5 m	0 m	4 m	5 n
	hn (Anzəhl 1) hn (Anzəhl 2)		14,0	2,0	120 120	67		70,8	50,0	46,3	65,3	44,6	40,
	(Grundlast)		32,0	2,0	100	135 207		77,4 68,8	56,6 52,5	52,9 33,9	68,3 71,8	47,6 55,5	43, 36,
- Gesa			48.0	6.0		2007	-	78.7	58.7	53.8	74.1	56.4	46.
Schlenen-	T T	Fahrflächen-	Strecken-	Kurvenfahr-	Gleisbrems-	Vork	ehrungen	g.	Si	onstige		Brück	ce
kilometer	Fahrbahnart	zustand	geschwindigk		geräusch KL	Quiet	schgeräus	iche	Ge	räusche		KBr	KLM
km	cl	- 2	km/h	dB	dB	_	dB			dB		dB	dB
	Standardfahrbahn	Char		*		-			A 199 . D		Maria Day	ror	-
Schiene (Stree		Gleis:	1	ntung:	0-1-1-	1.5	_	ADs	chnitt: 2		Km: 0+		
- 1	Zugart Name		Tag	l Züge Nacht	Geschwin- digkeit	Länge je Zug	Max			sionspeg	et E.w. las	Nacht	
	Peame		rag	PRINCIPL	km/h	m ye zug	Piax	0 m	Tag 4 m	5 m	0 m	4 m	5 m
1 S-Bai	hn (Anzahl 1)		14.0	2,0	120	67		74,6	50,0	46,3	69,2	44,6	40.
	hn (Anzahl 2)		32,0	2,0	120	135	*2	81,2	56,6	52,9	72,2	47,6	43,5
	(Grundlast)		2,0 48.0	2,0 6.0	100	207	-	73,1	52,5 \$8.7	33,9 53.8	76,1	55,5	36,9
- Gesa	MINT	Fahrflächen-	Strecken-	Kurvenfahr-	Gleisbrems-	Vork	ehrungen		_	onstige	/8.1	Brûck	
kilometer	Fahrbahnart	zustand	geschwindigk	STATE OF THE PARTY	geräusch KL		schgeräus		100000	räusche	- 1	KBr I	KLM
km	ct	2	km/h	dB	dB		dB			dB		dB	dB
0+595	Feste Fahrbahn		-							14			
Schiene (Strec	cke 5502)	Gleis:	Rid	vitung:				Abs	chnitt: 3		Km: 0+	613	
- A	Zugart		Anzah	l Züge	Geschwin-	Länge			Emis	ssionspeg	el t.'w [di	3(A)]	
	Name		Tag	Nacht	digkeit	je Zug	Max		Tag	1		Nacht	£
			110		km/h	m		0 m	4 m	5 m	0 m	4 m	5 n
	hn (Anzahl 1) hn (Anzahl 2)		14,0 32,0	2,0	120 120	135		70,8 77,4	50,0 56,6	46,3 52,9	65,3 68,3	44,6 47,6	40,9
	(Grundlast)		2,0	2,0	100	207	2	68,8	52,5	33,9	71,8	55,5	36,9
3 O.L.	amt		48,0	6,0				78,7	58,7	53,8	74.1	56,4	46,2
- Gesa		Fahrflächen-	Strecken-	Kurvenfahr-	Gleisbrems-		ehrungen			onstige		Brück	
- Gesa Schienen-		zustand	geschwindigk		geräusch KL	Quieb	schgeräus	iche	Ge	räusche		KBr	KLM
- Gesa Schienen- kilometer	Fahrbahnart		km/h	dB	dB		dΒ			dB	$\overline{}$	dB	dΒ
- Gesa Schienen-	cl	- 2	100,011	-								-	

Fahrzeug-Kategorien zum Zug / zu den Zügen

Nr.	Elementname	Zugert	vMax (km/h)	Pahraeugkategorie	AnzaN Einheiten	Fahrzeugkategorie	Anzahl Einheiten
1	S-Bahn (Anzahi 1)	Regulärer Zug	120	5-25-A12	1		
2	S-Bahn (Anzahl 2)	Regulärer Zug	120	5-25-A12	2		
3	GZ-E (Grundlest)	Regulärer Zug	100	7-25_64	1	18-25	10

Anlage 2.10 Eingabedaten / Ausgangsdaten Straße

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Emissionsberechnung Straße mit Emissionspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

Stratte		Stratemare	
Abschnitsname KM DTV	Non-	Characterisating Description Technique Wednesday	
Service of the servic	Note that the second of the se	Consideration Trigitizer Verhale Millioner stanisticher Verhale Millioner stanisticher Verhale Prozent Liver 1 in Zeitbereich Prozent Liver 1 in Zeitbereich Millioner stanisticher Verhale in Zeitbereich Millioner stanisticher Verhale in Zeitbereich Prozent Liver 1 in Zeitbereich Geschwindigkeich Perin zeitbereich Geschwindigkeich Verhale in Zeitbereich Geschwindigkeich Liver 1 in Zeitbereich Geschwindigkeit Liver 1 in Zeitbereich Geschwindigkeit Liver 2 in Zeitbereich Seitbereich zu der Seitbereich Schalterstanisprozent / Meter in Zeitbereich Schalterstanisprozent / Meter in Zeitbereich	

8649,1/2024-8K Ingenleurbüro Kottemair GmbH Seite 1 von 2 Rechenlauf IV: 123 Gewerbepart 4, 85250 Altomünster

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Emissionsberechnung Straße mit Emissionspegel 8669_1_Verkehrslärm Gesamt, Straße und Schiene (DIN 18005)

Stratte /	Atschwilsrame	KM	SHA	Straßeroterf läche	- 36	gPXW	ST. SWI	#LkwZ	Distant	24	p?low	DLRW1	BLRIVZ	\$Krad	SERVI	ATSOAT	VLBox2	NEKW	VLXWZ.	LMXIA	Dreft	2 equip	EW	EM.
			123		Tax.	Tag	Tag	Tag	Tag	Naction	Nacial	Nacht.	Necht	Nacht	Tag	Tag	Tag	Nacht	Macre	Noctic		10.8	Tag	Nacht
		Note:	172/291	0	SR/II	16	196	16	76	KS:/h	76	76	36	76	kon/h	km/f)	331/11	83T/TE	kore/fa	Nativiti.	40	26	dB(A)	:38(A)
Staatustratis 90050	100/80	3,576	10368	Asphultixeoru <- AC11	600,6	0.2,8	2,4	0,8	3,6	76,8	03,5	3,1	1,4	1,0	100	80	80	100	80	80	0,0	-1,0	87,4	79,0
Staatustinaße SCX050	50/50	3,000	10358	/sphaltbelone <= AC11	609,5	93,8	2,4	0,8	3,0	76,8	93,5	3,2	1,4	1.9	58	50	50	50	50	50	0,0	-0.3	86,2	71,1
3.aatustra0e 3:2000	79/70	3,314	19358	Asphaltizarine <= AC11	609,5	93,8	2,4	0,6	3,0	76,8	93,5	3,2	1,4	1,9	70	70	70	70	70	70	0,0	-0,7	0,00	74,5

8669.1/2024-8K Ingenieurbüro Kottemair GmbH Seite 2 von :
Recherdauf Nr. 123 Gewertepart 4, 85250 Altomünster

Anlage 2.10 Eingabedaten / Ausgangsdaten Straße

Eingangsdaten nach /12/

		gemeine Angels					keltrijelest			GL - Februar	MSV			Zander								Gerbanch	åmr-om					
role						DTY	LIV.		54 Do 1629			K/IRI		Kitziisi	SVAN	Ang Ta				LVm	1.5	u:	Reset		PT.	102	Blind	1,0
				Zinian					Hitz	Ter	MINNE		100	1518	_	test	- 3	q 06 - 27	Life		_	Til	Teorna	S Cale				
				Hedut.			Ret				too!													a and				
							find			150	MISSERI												forming					
							EWin			Mil	See Hit						- 40	m 22 0						00 Uhr				
					Kitarbahi		Kita/24h		KEA/DAN		MAIN	KHIM		Male	1		ntan		(886)	- 10/601	Mah	Hitch	Ritori	Mich		100		
2050		76349401			7339	3648	8364	284	9645	1	548	4	114	-1	-11	14	506	3.2	65,4	477	12	4	15	508	2.4	0.8	3	
	11:		904	TMt22	289	9161	4	28	Read I	100	2.1	4	-14	4	4	34			75/000	535	15	53	17	572	2.6	0.9	2.9	
- 1	KON	in Markt Inders		0	8522	9189	251	183	1271	0.57	487	- 4	-10	-1	4	- 8				303	4	1	10	318	1.1	0.3	3.2	
- 1	Finn.	312047 bai Puth			234	6200	8118	78	374	0.97	42		1 2	1	- 4	164	64	46	56.8	60	1.9	41	340	84	3.2	14	1.9	

Strassendeckschichttypen nach Grundlage /12/

Tabelle Strassendeckschichttypen nach RLS-19 /6/

Straßendeckschichttyp SDT	Dsp	SDT.FZG(V) hwindigk	chichtkorr in dB bei e eit v _{FzG} in ür	iner
* TO CONTROL OF THE TOWN OF THE CONTROL OF THE TOWN OF THE CONTROL	PI	w	L	cw
	≤ 60	> 60	≤ 60	> 60
Nicht geriffelter Gussasphalt	0,0	0,0	0,0	0,0
Splittmastixasphalte SMA 5 und SMA 8 nach ZTV Asphalt-StB 07/13 und Abstumpfung mit Abstreumaterial der Lieferkömung 1/3	-2,6	\times	-1,8	\times
Splittmastixasphalte SMA 8 und SMA 11 nach ZTV Asphalt-StB 07/13 und Abstumpfung mit Abstreumaterial der Lieferkörnung 1/3	X	-1,8	\times	-2,0
Asphaltbetone ≤ AC 11 nach ZTV Asphalt-StB 07/13 und Abstumpfung mit Abstreumaterial der Lieferkörnung 1/3	-2,7	-1,9	-1,9	-2,1
Offenporiger Asphalt aus PA 11 nach ZTV Asphalt-StB 07/13	\sim	-4,5	> <	-4,4
Offenporiger Asphalt aus PA 8 nach ZTV Asphalt-StB 07/13	> <	-5,5	><	-5,4
Betone nach ZTV Beton-StB 07 mit Waschbetonoberfläche	><	-1,4	><	-2,3
Lärmarmer Gussasphalt nach ZTV Asphalt-StB 07/13, Verfahren B	><	-2,0	><	-1,5
Lärmtechnisch optimierter Asphalt aus AC D LOA nach E LA D	-3,2	> <	-1,0	> <
Lärmtechnisch optimierter Asphalt aus SMA LA 8 nach E LA D	\sim	-2,8	\sim	-4,6
Dünne Asphaltdeckschichten in Heißbauweise auf Versiegelung aus DSH-V 5 nach ZTV BEA-StB 07/13	-3,9	-2,8	-0,9	-2,3

Anlage 2.11 Verkehrslärm: Vergleich zum "ORW" und "IGW"

Nr.	Etage	HR	Nutz-	ORWLT	ORW,N	Verkehr Lr,T Lr,I		18005 Diff.N	16. BE	Diff.N	Nr.	Etage	HR	Nutz-	ORW.T	ORW,N		kehr Lr,N	DIN Deff,T	18005 Diff.N	16. BI Diff,T	mSchV Diff,I
72400	ionsort: GE2,	585.56	ung		(A)I	[d8(A)]		KA)1		(A)1	1000	Horsont: MLS	10000	veg		MAN		(A)I		(A)]		(A)1
1	EG	//	GE	65	55	50 41	-15	-14	-19	-18	26	EG -	N	IN	60	50	57	48	-1	-2	-7	-6
2	1. OG EG	N W	GE GE	65	.55 .55	51 42 42 33	-34 -23	-13 -22	-19 -27	-1.7 -26	28 29	1. OG EG	N O	MI MI	60	50 50	58 63	49 54	-2	-1	-6	-5
2	1.06	w	GE	65	55	43 34	-22	-21	×26i	-25	29	1.05	0	MI	60	50	64	55	4	-	0	1
3	1.0G	5	GE GE	65 65	55 55	51 42 52 44	-14 -13	-13 -11	-10 -17	-17 -15	30 30	1. OG	50 50	MI MI	60 60	90 50	61 62	52 53	1	2	- 2	-2
4	EG	0	GE	65	55	53 45	-12	-10	-2,6	-14	33	EG	5	MU	60	50	56	46	-4	-2	· · ·	-6
4	1. OG	D Married	GE	65	.55	55 47	-10	-6	-14	-12	32	L OG EG	S W	MI	60	50 50	57 45	49 36	-3 -45	-14	-7	-16
5	EG	N	MI	60	50	46 37	-14	-13	-18	-17	32	1,05	W	MI	60	50	48	39	-12	-12	-26	-13
5	1. OG	N	IM	60	50	47 39	-13	-11	-17	-15	33	EG 1.0G	N	NI)	60	50 50	55 56	46	-5	4	-9 -8	-B
6	EG 1. OG	0	MI	60	50 50	50 42 52 44	-10 -8	1 4	-14 -12	-12 -10	Imenis			- 1000	100000	- 200	A STATE OF	99		1 1 1		
7	EG	S	MI	60	50	49 41	-11	-9	-15	-13	34	EG	N	MI	60	50	53	45	-7	-5	-11	-9
8	1. OG EG	S W	MI	60	50	51 43 41 32	-19	-18	-13 -23	-11	34 35	1. OG EG	0	MI MI	60	50	55	46 50	-1	0	-5	-B
8	1.0G	W	MI	60	50	41 32 41 33	-19	-17	-23	-22 -21	35	1. OG	0	MI	60	50	59	51	-1	1	-5	-3
	ionsort MIZ	_		-	-		1 70	_	- 55	P 1000	36	EG 1. OG	0	MI MT	60 60	50 50	59 59	51 51	1	1	-5	-3 -3
9	1.0G	74	114	60	50 50	50 41 51 42	-10	-9	-04 -13	-13 -12	36 37	EG	S	EM EM	60	50	55	47	-5	-3	-9	-7
10	EG	0	MI	60	50	56 47	4 3	-3	-B -7	-7 -6	37 38	1, OG EG	S W	MI MI	60	50 50	55 46	49 37	-5 -14	-2	-9 -18	-17
10	1.0G EG	5	MI	60	50	57 48 53 44	-7	-6	-11	-10	36	1,0G	W	MI	60	- 50	47	38	-13	-12	-27	-16
11	1.0G	5	ML	60	50	55 46	-5	4	-9	-6		ionsort WAS					-	45				
12	1.0G	w	MI	60	50 50	45 36 46 38	-15 -14	-14	-19 -38	-18 -16	39	EG 1.0G	5	WA	.55 .55	45 45	49 51	41 43	-6	-7	-10	-6
reniss		Haus01		1000	700	200 TO 100	-			The same	40	EG	0	WA	55	45	51.	43	4	-2	-8	-6
13	EG	N	MI	60	50	58 49	-2	-1	-6	+3	40	L. QG EG	N	WA	55 55	45 45	52 47	38	-1	-7	-12	-11
13	1. OG	0	MI	60	50	60 51 64 55	4	5	0	-3 1	41	1.05	N	WA	55	45	47	39	-fl	-6	-12	-10
14	1. OG	0	м	60	50	65 56	5	6	1	2	42 42	EG 1,05	W	WA	55 55	45	39	30	-16 -15	-15 -14	-20 -19	-19 -18
15 15	EG 1. OG	0	MI	60 60	50 50	64 55 65 56	5	6	0	2		Horsart WAS		. Hite		1 1/6	1			1 -100		
16 16	EG 1. OG	S	MI	60	50 50	59 51 60 52	*	1	-5	-2	43	EG	S	WA WA	55	45	59 61	51	4	6	0	2
17	EG	S W	MI	60	50	45 36	-15	-14	-19	-2 -18	43	1.0G EG	5	WA.	55 55	45 45	60	52 52	3	9	i	3
17	1.00	W	MI	60	50	48 39	-12	-41	-16	45	44	1,05	0	WA	55 55	45	62	53	7	5	3	-2
IS IS	ionsort: MI 3,	74	ML	60	50	59 46	-6	-4	-26	-6	45 45	1, 0G	N N	WA	55	45 45	56 58	47 48	3	3	-5	4
18	1.0G	79	MI	60	50	56 47	4	- 3	-8	.7	46	EG 1.0G	W	WA	.55 .55	45	52	43	-3	-2	7	-6
19 19	1.0G	0	MI	60 60	50 50	61 52 62 53	1	2	-3	-22		ionsort WA	Haus02	170	- 23	12	33	- 77				1 3
20	EG	S	MI	60	50	57 48	-3	-2	-7	-6	47	EG	5	WA	55	45	57	48	2	3	-2	-1
20 21	1.0G EG	S W	MI	60	50	58 49 46 39	12	-11	-16	-15	46	1.05 EG	0	WA	55 55	45 45	58 58	50	3	5	1	1
22	1. OG	W	FIL	60	50	51 42	9	-6	-33	-12	46	1.06	0	WA.	55	45	60	51	- 5	5	1	2
manis s							1			1	49	EG 1.05	N N	WA	55 55	45 45	52 53	43	-1	-2	-7	-6
22	EG 1.0G	0	MI	60	50 50	56 48 57 49	-3	-2	-8 -7	-6 -5	50	EG	W	WA	55	45	47	36	-0.	-7	-12	-11
22 23	EG	0	MI	60	50	57 48	-3	-2	-7	-6	50	1.05	W	WA	.55	15	50	12	-4	-3	9	-7
23 24	1. OG EG	90	ML	60	50 50	58 49 56 48	4	- 4	-6	-6	1											
24	1,00	50	MI	60	50	57 49	-3	4	-7	-5												
24 25 25 25 26	1.0G	5	IM IM	60 60	50 50	53 44 54 46	-7 -6	4	-11 -10	-10 -8												
26	EG	w	MI	60	50	47 38	-13	-12	147	-16												
26 27	1. OG EG	W	MI	60	50 50	48 40 51 42	-12	-10 -8	-16 -13	-14												
27	1.0G	n	HI	- SO	50	52 44	-8	-6	-12	-10												
	- 8040 1,0004 RI				ngenieurbüro Katt			-		fate to a fi	In. we	- 8591 1-2074 R	3 1			ngeninurbiro Kati						Selfe 2 vo

Towns I	Will the Minister	
Spalte	Beschreibung	
Bage HR	maßgebliches Stockwert	
nuts-	Himmelsrichtung der Gebruchsreite Gebretscharabter	
RW,T	Orientlerungswert nach DIN 18005 Tag bzw. Nacht	
lerkehr.	Beurtellungspegel Tag bew. Nacht	
XN 18005	Unter- law. Überschreitung des Grientierungswertes DEN 18005 Tag bzw. Nacht	
I6. BInSchV	Unter-lizw. Überschreitung des Immissionignenzwertes 16.8tmSchV Tag bzw. Nacht Hinnes: Der Immissionignenzwert Segt Tag und Nacht je 4 dB(A) über dem Onemienungswert	

Anlage 3 Verkehrslärm nur Schiene Anlage 3.1 Beurteilungspegel Einzelpunkte, nur Schienenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrsläm nur Schiene (DIN 18005)

Legende

Ilik
Immiscionsort Name des Immissionsorts
Geschoss
FR HR Himmetsricktung
KATAN Gelietmutung
X m X-Koordinate
Y m Koordinate
Y m Gelierdschere
Z-Koordinate
Z-Koordin

 8659.1/2024-RK
 Ingenieurbürg-Kottermair GmbH
 Seite 1 von 4

 Rechenlauf Nr. 122
 Gewerbepark 4, 85250 Altomünster
 30.04.20231:03

SoundPLAN 9.1

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslämn nur Schiene (DIN 18005)

IN	Immissionsort	Geschoos	HR	Nutzung	X	Ą	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
1	GE2,Haus01	EG 1.OG	N	GE	676867,1	5354866,6	487,4 487,4	490,0 492,8	65 65	35 39		55 55	31 34		
2	GE2,Haus01	EG 1.OG	W	GE	676857,6	5354354,2	487,8 487,8	490,0 492,8	65 65	31 32	-	55 55	26 27		
3	GE2,Hous01	EG 1.OG	S	GE	676868,1	5354842,7	496,8 486,8	490,0 492,8	65 65	41 44		55 55	37 40	-	
4	GE2,Heus01	EG 1.0G	0	GE	676877,6	5354355,1	485,5 486,5	490,0 492,8	65 65	42 46	-	55 55	38 41	=	
5	MI1,Haus01	EG 1.OG	N	ME	676836,8	5354395,8	489,5 489,5	492,4 495,2	60 60	34 36		50 50	29 32	=	
6	MI1,Haus01	EG 1.0G	0	MI	676842,8	5354388,5	489,4 489,4	492,4 495,2	60 60	41 44		50 50	36 40		
7	M11,Haus01	EG 1.DG	5	MI	676837,6	5354880,5	489,7 489.7	492,4 495.2	60 60	40 43		50 50	36 38	_	
8	M11,Haus01	EG 1.0G	W	ME	676831,6	5354387,9	489,8 489,8	492,4 495.2	60 60	31 31	-	50 50	26 27		
9	M12,Haus01	EG 1.DG	N	MI	676892,0	5354892,3	486,2 486,2	488,9 491,7	60 60	34 34	=	50 50	29 30	_	
10	M12,Haus01	EG 1.DG	0	ME	676897,7	5354387,6	485,7 485,7	488,9 491,7	60 60	43 46		50 50	38 41	(444) (444)	
11	M12,Haus01	EG 1.OG	S	MI	676892,5	5354382,4	485,9 485,9	488,9 491,7	60 60	41 45		50 50	37 41		
12	M12,Haus01	EG 1.OG	W	ME	676886,8	5354387,0	486,4 486,4	488,9 491.7	60 60	33 36	=	50 50	29 31		
13	M13,Haus01	EG 1.0G	N	MI	676930,5	5354875,1	483,2 483,2	485,8 488.6	60	39 40	-	50 50	35 36	-	
14	M13,Haus01	EG 1.0G	a	MI	676939,1	5354371,8	482,7 482.7	485,8 488.6	60 60	48 48	Ξ.	50 50	43 44		
15	M13,Heus01	EG 1.OG	0	MI	676940,6	5354365,6	482,4 482,4	465,8 488,6	60 60	48 49	1	50 50	44 44		
16	M13,Haus01	EG 1.DG	5	MI	676932,1	5354362,7	482,9 482,9	485,8 488,6	60 60	48 49	-	50 50	44 44	-	
17	MI3,Haus01	EG 1.OG	W	MI	676922,8	5354368,5	483,5 483,6	485,8 488,6	60 60	31 36		50 50	27 32		
18	M13,Haus02	EG 1.0G	N	ME	676921,5	5354360,1	483,5 483.5	485,3 489,1	60 60	44 45		50 50	40 40	-	

8691/2024-RK Ingeniaurbürg Kottermair GmbH Seite 2 von 4 Gewertbepark 4,85150 Altomünster 300 küztstuss.

Seite 62 von 73

Anlage 3.1 Beurteilungspegel Einzelpunkte, nur Schienenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrsläm nur Schiene (DIN 18005)

INr	Immesionsort	Geschoss	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
9	M13,Haus02	EG	0	ME	676929,6	5354354,2	483,0	486,3	60	49		50	44	-	
		1.0G					483,0	489,1	60	50	(2005)	50	45		
20	M13,Haus02	EG 1,OG	S	ME	676921 _r 9	5354347,7	483,5 483,5	486,3 489,1	60 60	46 47	-	50 50	41 42		
21	M13,Hous02	EG 1,OG	W	IM	676913,8	5354353,6	483,9 483.9	486,3 489,1	60	35 38		50 50	30 33	-	
2	M14,Heus01	EG 1.OG	0	MI	676899,9	5354339,2	484,6 484,6	467,4 490.2	60	44 47	-	50 50	40 42	= 1	
23	M14,Haus01	EG 1,0G	0	MI	676900,2	5354333,1	484,4 484,4	487,4 490.2	60	44 47		50 50	40 43		
24	M14,Haus01	EG 1.0G	50	MI	676899,5	5354331,5	484,4	487,4	60	44 47	77	50	39 42		
25	M14,Haus01	EG	5	ML	676892,4	5354330,2	484,4 484,7	490,2 487,4	60	40		50 50	36		
~	Middle -03	1.05	W	167	£26007.0	F2F4727 A	484,7	490,2	60	44	-	50	40		
26	M14,Haus01	EG 1.OG	W	ML	676887,0	5354337,0	485,3 485,3	487,4 490,2	60 60	34 35		50 50	29 31		
27	M14,Haus01	EG 1,DG	N	WE	676893, 2	5354344,5	485,1 485,1	487,4 490,2	60 60	38 40	=	50 50	33 35		
28	M15,Haus01	EG 1.DG	N	ME	676934,2	5354325,0	482,2 482.2	484,9 487.7	60 60	40 41		50 50	35 37	(414) 1440)	
29	M15,Haus01	EG 1,OG	О	MI	676946,4	5354326,4	481,6 481.6	484,9 487.7	60 60	50 50		50 50	45 46	_	
30	MI5,Haus01	EG 1.0G	90	ME	676942,9	5354313,7	481,6 481,6	484,9 487.7	60 60	50 51	-	50 50	46 46		
31	M15,Haus01	EG 1,0G	s	MI	676928,3	5354303,3	482,0 482.0	484,9 487.7	60	48 49	-	50 50	44		
32	MI5,Haus01	EG 1.0G	W	MI	676917,8	5354310,8	482,6 482.6	484,9 487.7	60	31 33		50 50	27 28		
33	M15,Heus01	EG 1.0G	N	MI	676920,3	5354319,7	482,7	484,9 487.7	60	40 41	-	50 50	35 36		
34	M15,Haus02	EG 1,0G	N	MI	676914,4	5354296,0	482,5 482,5	485,2 488.0	60	46 46	-	50 50	41 42	-	
35	M15,Haus02	EG 1.0G	O	MI	676928,9	5354290,4	481,9 481.9	485,2 488.0	60 60	50 51	_	50 50	46 46	=	
36	M15,Haus02	EG 1.0G	O	ME	676929,4	5354282,3	481,9 481.9	485,2 488.0	60 60	50 51		50 50	96 96	-	

 8659.1/2014-RK
 Ingenieurbürg Kottermair GmbH
 Seite 3 von 4

 Rechenlauf Nr. 122
 Gewerbepark 4, 85250 Alkomünster
 30.04.30231/03

 SoundPLAN 9.1
 SoundPLAN 9.1

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslämn ur Schiene (DIN 18005)

INr	Immesionsort	Geschoss	HR.	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
37	M15,Haus02	EG	5	ME	676915,4	5354279,8	482,4	485,2	60	48	-	50	44		
		1.0G					482,4	488,0	60	48	722	50	44	200	
38	MI5,Haus02	EG 1,OG	W	MI	676900,8	5354287,2	483,0 483,0	485,2 488,0	60 60	35 36	H	50 50	31 31	***	
39	WA1,Hous01	EG 1.OG	S	VVA	676838,2	5354109,8	469,2 469,2	491,9 494,7	55 55	39 42	1 1	45 45	35 38		
40	WA1,Haus01	EG 1.OG	0	WA	676841,5	535 41 15,6	489,2 489,2	491,9 494.7	55 55	40 43		45 45	36 38	=	
41	WA1,Haus01	EG 1.OG	N	N/A	676837,6	535 41 21,0	489,0 489,0	491,9 491,7	55 55	33 34	-	45 45	29 29	_	
42	WA1,Haus01	EG 1.0G	W	WA	676834,3	5354115,2	489,2 489,2	491,9 491,7	55 55	26 27	I	45 45	22 22	2	
43	WAZ,Haus01	EG 1.DG	5	WA	676921,5	535 41 03,3	484,3 484,3	487,2 490.0	55 55	47 48	-	45 45	42 43		
44	WA2,Haus01	EG 1.0G	0	WA	676924,8	5354108,9	484,2 484,2	487,2 490.0	55 55	46 47	_	45 45	41 42	_	
45	WA2,Haus01	EG 1.DG	N	WA	676921,0	5354414,1	484,5 484.5	487,2 490.0	55 55	40 38	=	45 45	36 33	_	
46	WA2,Haus01	EG 1.0G	W	WA	676917,7	5354408,5	484,7 484,7	487,2 490.0	55 55	38 40		45 45	33 35		
47	WA2,Haus02	EG 1.0G	S	N/A	676910,5	5354393,0	484,9 484,9	487,8 490,6	55 55	45 47		45 45	40 42	_	
48	WA2,Haus02	EG 1.OG	0	WA	676913,8	5354398,8	484,8 484,8	487,8 490,6	55 55	46 47	-	45 45	41 42	=	
49	WA2,Hous02	EG 1.OG	N	VVA	676910,0	5354904,3	485,1 485,1	487,8 490.6	55 55	36 33		45 45	32 28	=	
50	WA2,Haus02	EG 1.OG	W	WA	676905,7	5354398,5	485,2 485,2	487,8 490,6	S5 S5	34 38	Ξ	45 45	30 34	2	

 8669.1/2014-8.K
 Ingenie urbilino Kottermair GmbH
 Seite 4 von 4

 Rechenlauf Nr. 122
 Gewerbepark 4,85150 Altomünster
 30.04.20131133

Seite 63 von 73

Anlage 3.2 Rechenlauf, Berechnung nur Schienenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Rechenlauf-Info 8669_1_Verkehrsläm nur Schiene (DIN 18005)

```
Projekt-Info
                                                            Bebauurgsplan Nr. 94, Niederroth – Rehtung Kreut <sup>*</sup>, Marktgemeinde Markt indexdorf
8683 1/2/24RC
 Projektijel:
Projekt Nr.:
 Projektoearbeiter
Auftraggeber
                                                            Roman Knoll
Marktgemeinde Markt Indersdorf
 Beschielbung.
Schaltechnische Untersuchung zur Aufstellung des Bebaurungsplanes Nr. 34 "Nie derroth-Richtung Kraut" in der Marie gemeinde Marie Indersdorf, Landkreiz Dechau
 WipflerPLAN Eischließungsträger- und
Projekte Leirungsgesellschaft mbH und Co. KG
Hermoloachim Maßow
Hohenwartes Straße 124
85276 Ptaffenhofen a.d. Ilm
  per E. Mail: jm@wipferplan.de
 Rechenlaufbeschreibung
                                                            Gebäudelämkarte
8683 J. Vierkehrslämmur Schiene (DIN 18005)
8683 T.
Rurf Ferunx
122
 Rechenart:
Titel:
Rechengruppe
Laufdater:
 SoundPLANnoise 9.1 (14.04.2025) - 64 bit
 Kernel Version:
 Rechenlaufparameter
Reflexionsordnung
Maxima is Reflexionrabs land zur Empfringer
Maxima is Reflexionrabs land zur Quelle
Sudtra dius
Filter.
Zulä ssige Tolleranz (til einzelne Quelle) 0.100 dB
Boderzelfektgebiete aus Staderraberflischen eizeugen.
Straßen als gelande bigend behandelin Ja
                                                                                                                 200 m
50m
                                                                                                                 Nein
 5 dB Bonus für Schiene ist gesetzt
```

 Septimon
 Ingenieureüro Kotemair GmbH
 Seite 1 von 2

 Rechenkof Nr. 122
 Gewerbepart 4, 65250 Altomünster

 SoundPLAN 9,1
 SoundPLAN 9,1

```
Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf
Rechenlauf-Info
8669_1_Verkehrslämn nur Schiene (DIN 18005)
```

```
Richitrier
Schreine.
Schre
```

8669,1/2024-8K
Rechellauf Nr. 122

Ingenleurbüro Kottemair GmbH
Gewerbepark 4, 85250 Altomünster

Seite 2 von 2

Seite 2 von 2

Seite 64 von 73

Anlage 4 Verkehrslärm nur Straße Anlage 4.1 Beurteilungspegel Einzelpunkte, nur Straßenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslämn ur Straße (DIN 18005)

 8659.1/2024-RK
 Ingenieurbürg-Kottermair GmbH
 Seite 1 von 4

 Rechenlauf Nr. 121
 Gewerbepark 4, 85250 Altomünster
 30.04.20231:85

SoundPLAN 9.1

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrsläm nur Straße (DIN 18005)

INc	Immesionsort	Geschoss	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
1	GE2,Haus01	EG 1.OG	N	GE	676867,1	5354366,6	487,4 487,4	490,0 492,8	65 65	50 51		55 55	40 41		
2	GE2,Haus01	EG 1.OG	W	GE	676857,6	5354354,2	487,8 487,8	490,0 492,8	65 65	41 42		55 55	32 33		
3	GE2,Hous01	EG 1.OG	S	GE	676963,1	5354342,7	496,8 486,8	490,0 492,8	65 65	50 52		55 55	41 42		
4	GE2,Haus01	EG 1.OG	0	GE	676877,6	5354355,1	485,5 486,5	490,0 492,8	65 65	53 55	-	55 55	44 45	_	
5	MI1,Haus01	EG 1.OG	N	ME	676836,8	5354395,8	489,5 489,5	492,4 495,2	60 60	45 47		50 50	36 38	=	
5	MI1,Haus01	EG 1.0G	0	MI	676842,8	5354388,5	489,4 489,4	492,4 495,2	60 60	50 52	I	50 50	41 42		
7	MI1,Haus01	EG 1.DG	5	ML	676837,6	5354380,5	489,7 489,7	492,4 495,2	60 60	48 50		50 50	39 41	=	
8	M11,Haus01	EG 1.0G	W	MI	676831,6	5354387,9	489,8 489,8	492,4 495,2	60 60	40 41	_	50 50	31 32		
9	M12,Haus01	EG 1.DG	N	MI	676892,0	5354892,3	486,2 486,2	488,9 491,7	60 60	50 50	=	50 50	41 41		
10	M12,Haus01	EG 1.DG	0	ME	676897,7	5354387,6	485,7 485,7	488,9 491,7	60 60	56 57		50 50	46 47	(444) 1	
11	M12,Haus01	EG 1.OG	S	MI	676892,5	5354382,4	485,9 485,9	488,9 491,7	60 60	53 54		50 50	43 45		
12	M12,Haus01	EG 1.OG	W	MI	676886,8	5354387,0	486,4 486,4	488,9 491,7	60 60	45 46	-	50 50	35 37	=	
13	MI3,Haus01	EG 1.OG	N	MI	676930,5	5354375,1	483,2 483,2	485,8 488,6	60	58 60	-	50 50	49 51		
14	M13,Haus01	EG 1.OG	a	MI	676939,1	5354371,8	482,7 482,7	485,8 488,6	60 60	63 65	3 5	50 50	54 56	4 6	
15	M13,Haus01	EG 1.OG	О	MI	676940,6	5354365,6	482,4 482,4	485,8 488,6	60 60	5 4 55	4 5	50 50	55 56	5 6	
16	M13,Haus01	EG 1.DG	S	MI	676932,1	5354362,7	482,9 482,9	485,8 488,6	60 60	59 60	-	50 50	50 51	<u>-</u>	
17	M13,Haus01	EG 1.OG	W	MI	676922,8	5354368,5	483,5 483,6	485,8 488,6	60 60	45 48	=	50 50	35 38		
18	M13,Haus02	EG 1.0G	N	ME	676921,5	5354360,1	483,5 483.5	485,3 489,1	60 60	54 55		50 50	45 46		

 8659.1/2024-RK
 Ingenieurbüro Kottermair GmbH
 Seite 2 von 4

 Rechenauf Nr. 121
 Gewertbepark. 4,85150. Altomünster
 30.06/00/2013/00

Seite 65 von 73

Anlage 4.1 Beurteilungspegel Einzelpunkte, nur Straßenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslämn nur Straße (DIN 18005)

INc	Immesionsort	Geschoss	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	d8(A)	dB(A)	dB(A)	dB(A)	dB(A)	
9	M13,Haus02	EG 1.0G	0	ME	676929,6	5354354,2	483,0 483,0	486,3 489,1	60 60	60 62	2	50 50	51 52	1 2	
0	M13,Haus02	EG 1,OG	S	MI	676921,9	5354347,7	483,5 483,5	486,3 489,1	60 60	56 58		50 50	47 48		
1	M13,Haus02	EG 1.0G	W	MI	676913,8	5354353,6	483,9 483,9	486,3 489,1	60 60	48 50		50 50	38 41		
2	M14,Heus01	EG 1.OG	0	MI	676899,9	5354339,2	484,6 484,6	487,4 490,2	60 60	56 57	_	50 50	47 48	=	
3	M14,Haus01	EG 1.OG	0	MI	676900,2	5354333,1	484,4 484,4	487,4 490,2	60 60	56 57		50 50	47 48	_	
4	M14,Haus01	EG 1.0G	50	MI	676899,5	5354331,5	484,4 484,4	487,4 490,2	60 60	56 57	I	50 50	47 48		
25	M14,Haus01	EG 1.0G	5	MI	676892,4	5354830,2	484,7 484,7	487,4 490.2	60 60	53 54	=	50 50	43 44	_	
6	M14,Haus01	EG 1.OG	W	MI	676887,0	5354337,0	485,3 485,3	487,4 490.2	60 60	47 48	-	50 50	37 39		
7	M14,Haus01	EG 1.OG	N	MI	676893, 2	5354344,5	485,1 485,1	487,4 490,2	60 60	51 52	=	50 50	42 43		
8	M15,Haus01	EG 1.DG	N	ME	676934, 2	5354325,0	482,2 482,2	484,9 487,7	60 60	57 58		50 50	47 49	2000	
9	M15,Haus01	EG 1.OG	О	MI	676946,4	5354326,4	481,6 481,6	484,9 487,7	60 60	63 64	3 4	50 50	53 55	3 5	
0	MI5,Haus01	EG 1.OG	90	MI	676942,9	5354313,7	481,6 481,6	484,9 487,7	60 60	51 52	1 2	50 50	51 53	1 3	
1	M15,Haus01	EG 1.OG	S	MI	676928,3	5354303,3	462,0 482,0	484,9 487,7	60 60	55 56	-	50 50	46 47	-	
2	MI5,Haus01	EG 1.0G	W	MI	676917,8	5354310,8	482,6 482,6	484,9 487,7	60	45 48	7	50 50	36 38		
13	MI5,Heus01	EG 1.OG	N	IM	676920,3	5354319,7	482,7 482,7	484,9 487,7	60	54 56	Ξ	50 50	45 47		
4	M15,Haus02	EG 1.OG	N	MI	676914,4	5354296,0	482,5 482,5	485,2 488,0	60 60	53 54		50 50	43 45	_	
5	M15,Haus02	EG 1.DG	O	MI	676928,9	5354290,4	481,9 481,9	485,2 488,0	60 60	58 59	-	50 50	49 50		
6	M15,Haus02	EG 1.0G	0	ME	676929,4	5354282,3	481,9 481.9	485,2 488.0	60 60	58 59		50 50	49 50		

 8659.1/2014-RK
 Ingenieurbüro Kottermair GmbH
 Seite 3 von 4

 Rechenlauf Nr. 121
 Gewerbepark 4, 85250 Altomünster
 30.04.30/2017/05

 SoundPLAN 9.1
 Seite 3 von 4
 30.04.30/2017/05

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Beurteilungspegel 8669_1_Verkehrslärm nur Straße (DIN 18005)

INr	Immesionsort	Geschoss	HR	Nutzung	X	Y	GH	Z	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
37	M15,Haus02	EG	5	ME	676915,4	5354279,8	482,4	485,2	60	54		50	45		
		1.0G					482,4	488,0	60	54	7025	50	45	125	
38	M15,Haus02	EG	W	MI	676900,8	5354287,2	483,0	485,2	60	45		50	36	1944	
	1100	1,0G					483,0	488,0	60	46		50	37		
39	WA1,Haus01	EG	S	VVA	676838,2	5354109,8	489,2	491,9	55	49		45	40		
		1.0G		7 10000		and a second second	489,2	494,7	55	50	- HH	45	41		
40	WA1,Haus01	EG	0	WA	676841,5	5354115,6	489,2	491,9	55	51	Serve C	45	42		
		1.0G	12				489,2	494,7	55	52		45	42		
41	WA1,Haus01	EG	N	\VA	676837,6	5354421,0	489,0	491,9	55	47	-	45	38	942	
5011	900000000000000000000000000000000000000	1.0G	707031	9000	24/30/2001/00	- HOLENWARENE	489,0	494,7	55	47	777	45	38		
42	WA1,Haus01	EG	W	WA	676834,3	5354415,2	489,2	491,9	55	39	0.77750	45	30	77 PER 3	
		1.0G					489,2	494,7	55	40	544	45	30	12027	
43	WAZ,Haus01	EG	5	WA	676921,5	5354403,3	484,3	487,2	55	59	4	45	50	5	
		1.05					484,3	490,0	55	50	5	45	51	6	
44	WA2,Haus01	EG	0	WA	676924,8	5354408,9	484,2	487,2	55	50	5	45	51	6	
19929		1.05	(53)))	-0.000		-26/201/06/2020A	484,2	490,0	55	52	7	45	53	8	
45	WA2,Haus01	EG	N	WA	676921,0	5354414,1	484,5	487,2	55	56	1	45	47	2 3	
100		1.0G					484,5	490,0	55	58	3	45	48	3	
46	WA2,Haus01	EG	W	\VA	676917,7	5354408,5	484,7	487,2	55	51	444	45	42	(max.)	
- 4		1.0G					484,7	490,0	55	53		45	44		
47	WA2,Haus02	EG	S	WA	676910,5	5354393,0	484,9	487,8	55	56	1	45	47	2	
200		1.0G	41706	0.000		(2009) (2009)	484,9	490,6	55	58	3	45	49	4	
48	WA2,Haus02	EG	0	WA	676913,8	5354398,8	484,8	487,8	55	58	3	45	49	4	
		1.0G					484,8	490,6	55	50	5	45	50	5	
49	WA2,Hous02	EG	N	V/A.	676910,0	5354404,3	485,1	487,8	55	52	-	45	43	-	
	13.	1.0G					485,1	490,6	55	53	- m- v	45	44		
50	WA2,Haus02	EG	W	WA	676906,7	5354398,5	485,2	487,8	55	47	-	45	38	0	
80507	CONTRACTOR STORY	1.0G	0.00	61635	enteritation.	renecessit 2000/	485,2	490.6	55	50		45	41	44	

8669.1/2014-RK Ingenie urbiliro Kottermair GmbH Seite 4 von 4 Rechenlauf Nr. 121 Gewerbepark 4,85250 Altonünster 3004.20233335

SoundPLAN 9.1

Anlage 4.2 Rechenlauf, nur Straßenverkehr

Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf Rechenlauf-Info 8669_1_Verkehrslärm nur Straße (DIN 18005)

```
Projekt his

Projekt his

Policit bild:

Bobauargiplan N. 94, Niederojh-Rentung Krauf, Markegamahde Muris Indanderf
Frojekt P

Frojekt P

All projekt bild:

Beschreibung:

Beschreibung:

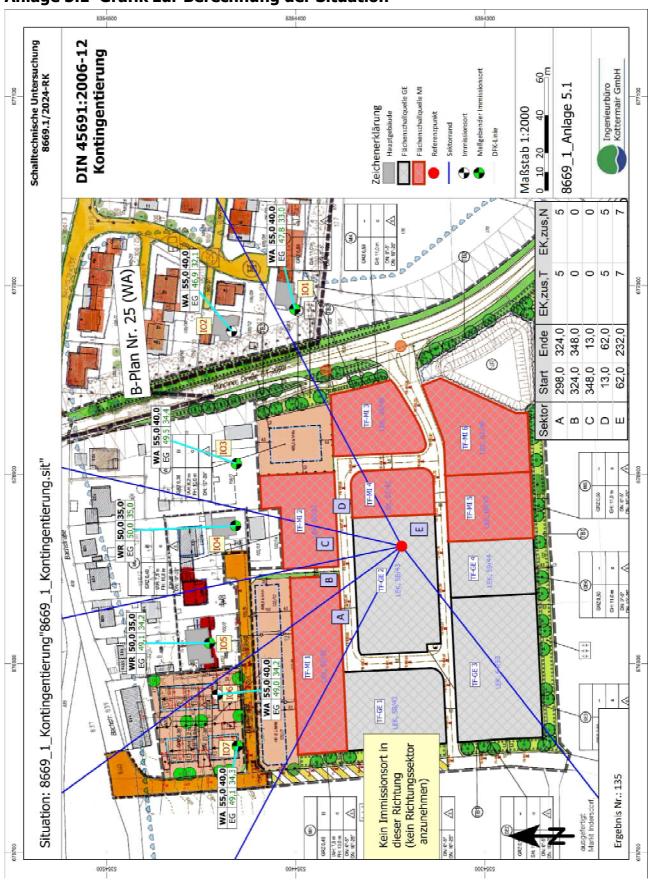
Schalbechnische Untersuchung zu Aufstellung des Bebausungsplanes N. 94, Niederojh-Richtung Krauf, in der Marie gemainde Marie Indendorf, Landines Dachau

Wigster PLAH Eischliebungshäper-rund
Projekt bis einungspreiche Indendorf ab Indendorf
Projekt bis einungspreiche Indendorf
Projekt bis einungspreiche
```

8665.1/2024-8K Ingenieurbüro Kottemair GmbH Seite 1 von 2
Rechenlauf Nr. 121 Gewerbepart 4, 85250 Altomünster

```
Bebauungsplan Nr. 94, "Niederroth – Richtung Kreut", Marktgemeinde Markt Indersdorf
Rechenlauf-Info
8669_1_Verkehrslärm nur Straße (DIN 18005)
```

```
Recitivers teht
Christonia berochrop with
Christonia berochrop with
Christonia berochrop with
Christonia berochrop with
Christonia berochrop berochrop
Calibroury and Christonia
```

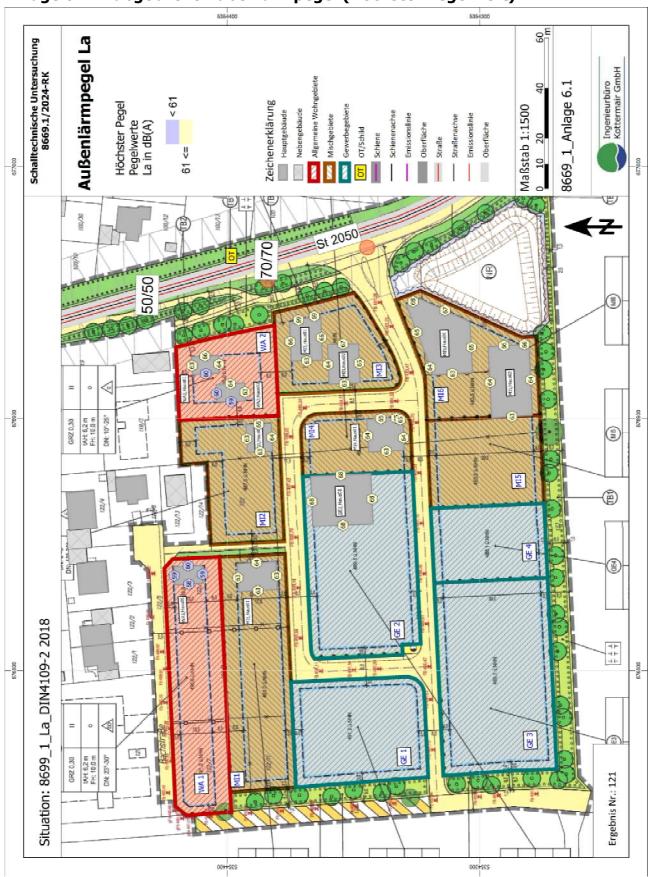

8669,1/2024-8K
Rechellauf Nr. 121

Gewerbepark 4, 85250 Altomünster

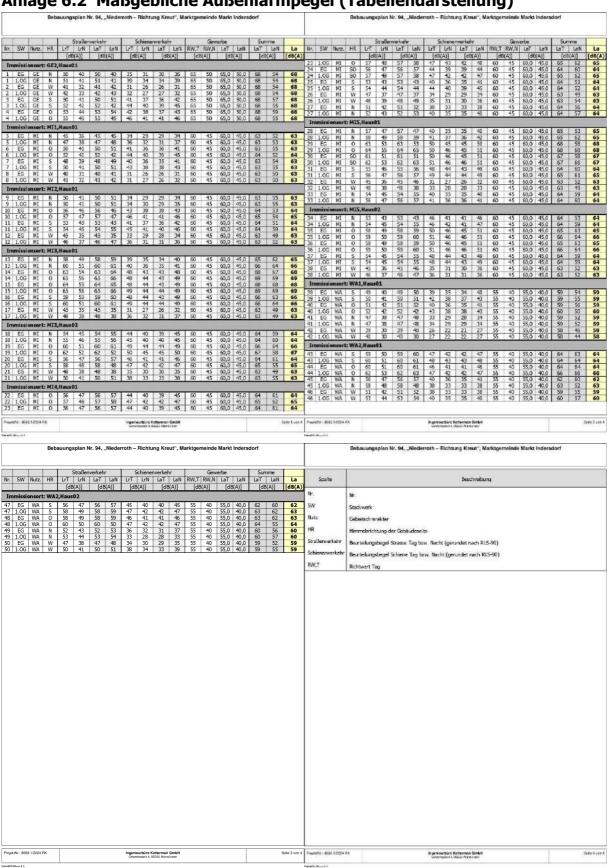
Seite 2 von 2

Gewerbepark 4, 85250 Altomünster

Anlage 5 Kontingentberechnung zur Planung Anlage 5.1 Grafik zur Berechnung der Situation


Anlage 5.2 Koordinaten der Teilflächen

Anlage 5.2 Koordinaten der Teilflächer	1
Flächenschallquelle	Flächenschallquelle
NAME =TF-GE 1	NAME =TF-MI 1
X	X
676753.69 5354372.83 0.00	676753.69 5354372.83 0.00
676757.73 5354320.35 0.00	
676790.81 5354321.92 0.00	676795.41 5354374.78 0.00
676792.50 5354322.21 0.00	676818.41 5354375.85 0.00
676793.72 5354322.71 0.00	676846.32 5354377.14 0.00
676794.83 5354323.43 0.00	676845.11 5354403.11 0.00
676795.79 5354324.35 0.00	676817.15 5354401.84 0.00
676796.55 5354325.43 0.00	676780.54 5354400.11 0.00
676797.10 5354326.63 0.00	676751.69 5354398.77 0.00
676797.41 5354327.91 0.00	
676797.48 5354329.24 0.00	
676795.41 5354374.78 0.00	Flächenschallquelle
676781.91 5354374.15 0.00	NAME =TF-MI 2
0,0,0131 333 137 1113	X
	676851.31 5354377.42 0.00
Flächonschallquollo	676901.11 5354377.42 0.00
Flächenschallquelle NAME =TF-GE 2	
	676899.24 5354419.00 0.00
X	676899.24 5354419.05 0.00
676841.02 5354368.38 0.00	676881.68 5354418.17 0.00
676808.28 5354366.86 0.00	676882.57 5354408.04 0.00
676806.72 5354366.58 0.00	676849.96 5354406.53 0.00
676805.60 5354366.09 0.00	
676804.61 5354365.38 0.00	
676806.18 5354330.46 0.00	Flächenschallquelle
676810.18 5354330.64 0.00	NAME =TF-MI 3
676810.51 5354323.35 0.00	x
676843.04 5354324.91 0.00	676909.55 5354380.07 0.00
676879.00 5354326.58 0.00	676911.63 5354335.08 0.00
676876.98 5354370.05 0.00	676911.83 5354333.98 0.00
	676912.27 5354333.08 0.00
	676912.91 5354332.32 0.00
Flächenschallquelle	676913.73 5354331.74 0.00
NAME =TF-GE 3	676914.66 5354331.38 0.00
X	676915.65 5354331.26 0.00
676758.19 5354314.37 0.00	676916.64 5354331.39 0.00
676760.25 5354287.58 0.00	676920.39 5354332.53 0.00
676760.25 5354287.52 0.00	676923.79 5354333.83 0.00
676760.80 5354271.28 0.00	676927.09 5354335.36 0.00
	676930.28 5354337.11 0.00
676836.81 5354273.05 0.00	676943.03 5354344.71 0.00
676834.68 5354317.98 0.00	676947.35 5354347.63 0.00
	676949.97 5354349.78 0.00
	676948.93 5354353.32 0.00
Flächenschallquelle	676945.23 5354367.36 0.00
NAME =TF-GE 4	676942.01 5354381.58 0.00
x	676936.95 5354381.35 0.00
676834.68 5354317.98 0.00	
676836.81 5354273.05 0.00	
676866.36 5354274.43 0.00	
676864.24 5354319.38 0.00	


Anlage 5.2 Koordinaten der Teilflächen

Flächenschallquelle	Flächenschallquelle
NAME =TF-MI 4	NAME =TF-MI 5
xyz	X
676898.27 5354369.92 0.00	676864.24 5354319.38 0.00
676897.07 5354370.48 0.00	676866.36 5354274.43 0.00
676895.78 5354370.79 0.00	676901.32 5354276.08 0.00
676894.46 5354370.86 0.00	676899.21 5354320.93 0.00
676876.98 5354370.05 0.00	
676879.00 5354326.58 0.00	
676897.47 5354327.33 0.00	Flächenschallquelle
676899.47 5354327.77 0.00	NAME =TF-MI 6
676900.55 5354328.35 0.00	X
676901.49 5354329.13 0.00	676899.21 5354320.93 0.00
676902.25 5354330.09 0.00	676901.32 5354276.08 0.00
676902.80 5354331.19 0.00	676932.59 5354277.56 0.00
676903.12 5354332.37 0.00	676932.31 5354283.48 0.00
676903.20 5354333.59 0.00	676950.75 5354323.47 0.00
676901.78 5354364.18 0.00	676946.99 5354333.10 0.00
676901.49 5354365.86 0.00	676922.05 5354323.37 0.00
676900.99 5354367.08 0.00	676916.93 5354321.72 0.00
676900.27 5354368.20 0.00	
676899.35 5354369.15 0.00	


Anlage 6 Maßgebliche Außenlärmpegel nach DIN 4109:2018 Anlage 6.1 Maßgebliche Außenlärmpegel (Höchster Pegelwert)

Anlage 6.2 Maßgebliche Außenlärmpegel (Tabellendarstellung)

Anlage 7 Mitgeltende UnterlagenAnlage 7.1 Grundlage zur Verkehrsregelung (Ortschild)

Anlage 7.2 Grundlage zum möglichen Ergänzungsgebiet /27/

Bebauungsplan /27/ für gebietsübergreifende Gliederung

